And it’s strange that you don’t call your approach Frequentist, when you derived it from expected cell counts in repeated samples.
Don’t forget—around here ‘Bayesian’ is used normatively, and as part of some sort of group identification. “Bayesians” here will often use frequentist approaches in particular problems.
But that can be legitimate, as Bayesian calculations are a superset of frequentist calculations. Nothing bars a Bayesian from postulating that a limiting frequency exists in an unbounded number of trials in some hypothetical situation; but you won’t see one, e.g., accept R.A. Fisher’s argument for his use of p-values for statistical inference.
Don’t forget—around here ‘Bayesian’ is used normatively, and as part of some sort of group identification. “Bayesians” here will often use frequentist approaches in particular problems.
But that can be legitimate, as Bayesian calculations are a superset of frequentist calculations. Nothing bars a Bayesian from postulating that a limiting frequency exists in an unbounded number of trials in some hypothetical situation; but you won’t see one, e.g., accept R.A. Fisher’s argument for his use of p-values for statistical inference.