I disagree with your interpretation of UDT. UDT says that, when making choices, you should evaluate all consequences of your choices, not just those that are causally connected to whatever object is instantiating your algorithm. However, while probabilities of different experiences are part of our optimization criteria, they do not need to play a role in the theory of optimization in general. I think we should determine more concretely whether these probabilities exist, but their absence from UDT is not very strong evidence against them.
The difference between SIA and SSA is essentially an overall factor for each universe describing its total reality-fluid. Under certain infinite models, there could be real-valued ratios.
The thing that worries me second-most about standard measure theory is infinitesimals. A Kolomogorov measure simply cannot handle a case with a finite measure of agents with finite utility and an infinitesimal measure of agents with an infinite utility.
The thing that worries me most about standard measure theory is my own uncertainty. Until I have time to read more deeply about it, I cannot be sure whether a surprise even bigger than infinitesimals is waiting for me.
I disagree with your interpretation of UDT. UDT says that, when making choices, you should evaluate all consequences of your choices, not just those that are causally connected to whatever object is instantiating your algorithm. However, while probabilities of different experiences are part of our optimization criteria, they do not need to play a role in the theory of optimization in general. I think we should determine more concretely whether these probabilities exist, but their absence from UDT is not very strong evidence against them.
The difference between SIA and SSA is essentially an overall factor for each universe describing its total reality-fluid. Under certain infinite models, there could be real-valued ratios.
The thing that worries me second-most about standard measure theory is infinitesimals. A Kolomogorov measure simply cannot handle a case with a finite measure of agents with finite utility and an infinitesimal measure of agents with an infinite utility.
The thing that worries me most about standard measure theory is my own uncertainty. Until I have time to read more deeply about it, I cannot be sure whether a surprise even bigger than infinitesimals is waiting for me.