It seems as though Pascal’s mugging may be vulnerable to the same “professor god” problem as Pascal’s wager. With probabilities that low, the difference between P(3^^^^3 people being tortured|you give the mugger $5) and P(3^^^^3 people being tortured| you spend $5 on a sandwich) may not even be calculable. It’s also possible that the guy is trying to deprive the sandwich maker of the money he would otherwise spend on the Simulated People Protection Fund.
If you’re going to say that P(X is true|someone says X is true)>P(X is true|~someone says X is true) in all cases, then that should apply to Pascal’s wager as well; P(Any given untestable god is real|there are several churches devoted to it)>P(Any given untestable god is real|it was only ever proposed hypothetically, tongue-in-cheek) and thus P(Pascal’s God)>P(professor god).
In this respect, I’m not sure how the two problems are different.
It seems as though Pascal’s mugging may be vulnerable to the same “professor god” problem as Pascal’s wager. With probabilities that low, the difference between P(3^^^^3 people being tortured|you give the mugger $5) and P(3^^^^3 people being tortured| you spend $5 on a sandwich) may not even be calculable. It’s also possible that the guy is trying to deprive the sandwich maker of the money he would otherwise spend on the Simulated People Protection Fund. If you’re going to say that P(X is true|someone says X is true)>P(X is true|~someone says X is true) in all cases, then that should apply to Pascal’s wager as well; P(Any given untestable god is real|there are several churches devoted to it)>P(Any given untestable god is real|it was only ever proposed hypothetically, tongue-in-cheek) and thus P(Pascal’s God)>P(professor god). In this respect, I’m not sure how the two problems are different.