I’m thinking more specifically than you are. Rather than learning probability theory to understand ML, learn only what you determine to be necessary for what ML applications you are interested in. The concept maps I use are very specific, and they avoid the weak connection problem you mention. (It’s worth noting that I develop these as an autodidact, so I don’t have to take an entire class to just get a few facts I’m interested in.)
It sounds like both you and estimator are actually both on the same page: estimator seems to be talking about the “prerequisite” in the sense of, “systematic prerequisite”, as in, people say that you should learn X before you learn Y. You seem to be talking about “prerequisite” in the sense that, “skill X is a necessary component of skill Y”
Both of you, however, seem to agree that you should ignore the stuff that is irrelevant to what you are actually trying to accomplish.
This is a good way to put it. I may not have been clear.
To use an example, I have a concept map about fluid dynamics that I used in a class I took on turbulence recently. There were a few concepts that I did not understand well at some point, and I wanted to figure out which ones. To be more specific, isotropic tensors are often used in turbulence theory and modeling, but I didn’t really understand how to construct isotropic tensors algebraically. It became pretty clear this was something I should learn given the number of links isotropic tensors had to other concepts.
I’m thinking more specifically than you are. Rather than learning probability theory to understand ML, learn only what you determine to be necessary for what ML applications you are interested in. The concept maps I use are very specific, and they avoid the weak connection problem you mention. (It’s worth noting that I develop these as an autodidact, so I don’t have to take an entire class to just get a few facts I’m interested in.)
It sounds like both you and estimator are actually both on the same page: estimator seems to be talking about the “prerequisite” in the sense of, “systematic prerequisite”, as in, people say that you should learn X before you learn Y. You seem to be talking about “prerequisite” in the sense that, “skill X is a necessary component of skill Y”
Both of you, however, seem to agree that you should ignore the stuff that is irrelevant to what you are actually trying to accomplish.
This is a good way to put it. I may not have been clear.
To use an example, I have a concept map about fluid dynamics that I used in a class I took on turbulence recently. There were a few concepts that I did not understand well at some point, and I wanted to figure out which ones. To be more specific, isotropic tensors are often used in turbulence theory and modeling, but I didn’t really understand how to construct isotropic tensors algebraically. It became pretty clear this was something I should learn given the number of links isotropic tensors had to other concepts.