Thank you for clarifying, I misunderstood your post.
Yes, you’re right. “essentially” arbitrary problems would be free game.
There is a hierarchy of questions one can ask though. That is, whatever oracle you introduce, you can now ask more complex questions and would require a more complex oracle to answer ( basically, you can ask the first oracle, questions about itself, which require another more complex oracle to answer).
When I saw you use the word “computer” I thought you meant, a literal computer that we could in principle build.
My focus was on the more philosophical/impractical side, and the computers we can actually build in principle, assuming the laws of physics are unchangable and we are basically correct, we can’t even build Universal Turing Machines/Turing Complete systems, but just linear bounded automatons, due to the holographic principle.
Also, the entire hierarchy can be solved simply by allowing non-uniform computational models, which is yet another benefit of non-uniform computational models.
Thank you for clarifying, I misunderstood your post.
Yes, you’re right. “essentially” arbitrary problems would be free game.
There is a hierarchy of questions one can ask though. That is, whatever oracle you introduce, you can now ask more complex questions and would require a more complex oracle to answer ( basically, you can ask the first oracle, questions about itself, which require another more complex oracle to answer).
When I saw you use the word “computer” I thought you meant, a literal computer that we could in principle build.
My focus was on the more philosophical/impractical side, and the computers we can actually build in principle, assuming the laws of physics are unchangable and we are basically correct, we can’t even build Universal Turing Machines/Turing Complete systems, but just linear bounded automatons, due to the holographic principle.
Also, the entire hierarchy can be solved simply by allowing non-uniform computational models, which is yet another benefit of non-uniform computational models.