A neat little result, that set theory is RE-hard, and damn this is a very large set, so large that it’s larger than every other cardinality.
This might be one of the few set theories that can’t be completely solved even with non-uniformity, as sometimes non-uniform models of computation, in if we could make them, we could solve every language.
An example is provided on the 14th page of this paper:
And this seems like a great challenge for the Universal Hypercomputer defined here, in that it could compute the entire universe of sets V using very weird resources.
A neat little result, that set theory is RE-hard, and damn this is a very large set, so large that it’s larger than every other cardinality.
This might be one of the few set theories that can’t be completely solved even with non-uniformity, as sometimes non-uniform models of computation, in if we could make them, we could solve every language.
An example is provided on the 14th page of this paper:
https://arxiv.org/pdf/0808.2669.pdf
And this seems like a great challenge for the Universal Hypercomputer defined here, in that it could compute the entire universe of sets V using very weird resources.
https://arxiv.org/pdf/1806.08747.pdf