The mere addition paradox is an argument that, if you accept some reasonable-seeming axioms about population ethics, then for any positive happiness level h, if we start from a population where everyone has happiness level h, then for any positive happiness level h’ < h, there is a larger population where everyone has happiness h’ that is preferable to the original population. Most people find this conterintuitive. The interesting thing is that either the counterintuitive result is true, or one of the assumptions is false.
This argument continues to apply regardless of how happiness scales with resources. The resource argument implies that the problem is not faced as stated when resources are fixed and happiness is logarithmic in resources, but (a) artificial thought experiments are useful if we are trying to formalize ethics, and (b) the problem is still faced if resources increase at the right rate as population increases. There is no need to update the Wikipedia page.
As I understand it, the idea behind this post dissolves the paradox because it allows us to reframe it in terms of possibility: for a fixed level of resources, there is a number of people for which equal distribution of resources produces optimal sum of utility.
Sure, you could get a greater sum from an enormous repugnant population at subsistence level, but that will take more resources than what you have to be created.
And what is more; even in that situation there is always another non-aberrant distribution of resources, that uses in total the same quantity of resources as the repugnant distribution, and produces greater sum of utility.
It doesn’t dissolve the paradox if it doesn’t show that you can construct a preference function over populations that doesn’t have any counterintuitive properties (while the repugnant conclusion argument implies it must have at least one counterintuitive property). At best, it shows that the relevant choices are unlikely to be faced in reality, such that even a “bad” preference function performs decently in the real world. But that doesn’t resolve the philosophical problem, much less dissolve it.
I don’t think it even shows that the relevant choices are unlikely to be faced in reality, since situations where you can get more resources by having a higher population are really common. (Consider: a higher population contains more workers)
It dissolves the RC for me, because it answers the question “What kind of cognitive algorithm, as felt from the inside, would generate the observed debate about “the Repugnant Conclusion”?” [grabbed from your link, substituted “free will” for “repugnant conclusion”].
I feel after reading that post that I do no longer feel that the RC is counterintuitive, and instead it feels self evident; I can channel the repugnancy to aberrant distributions of resources.
But granted, most people I have talked to do not feel the question is dissolved through this. I would be curious to see how many people stop being intuitively confused about RC after reading a similar line of reasoning.
The point about more workers ⇒ more resources is also an interesting thought. We could probably expand the model to vary resources with workers, and I would expect a similar conclusion for a reasonable model to hold: optimal sum of utility is not achieved in the extremes, but in a happy medium. Either that or each additional worker produces so much that even utility per capita grows as workers goes to infinity.
I don’t see how the post says anything about the cognitive algorithm generating the repugnant conclusion? It’s just saying the choices are unlikely to be faced in reality. I think people thinking through the repugnant conclusion are not necessarily thinking about resources, they might just be thinking about happiness levels (that’s how it’s usually stated, anyway).
Here’s a simple model. Total amount of resources = population + sqrt(population). Now we get a repugnant conclusion, it’s better to have as high a population as possible, and everyone is living off of 1 + epsilon resources.
The movement I was going through when thinking about the RC is something akin to “huh, happiness/utility is not a concept that I have an intuitive feeling for, so let me substitute happiness/utility for resources. Now clearly distributing the resources so thinly is very suboptimal. So let’s substitute back resources for utility/happiness and reach the conclusion that distributing the utility/happiness so thinly is very suboptimal, so I find this scenario repugnant.”
Yeah, the simple model you propose beats my initial intuition. It feels very off though. Maybe its missing diminishing returns and I am rigged to expect diminishing returns?
This is a novel argument about the applicability of the repugnant conclusion for a certain form of the happiness dependence on wealth. A faster-than-logarithmic growth does not let one avoid the conclusion even if the resources are constrained. It looks like a publishable result, let alone deserving a mention in the wikipedia.
The point of the post was to investigate the reallocation of existing resources to maximize total utility by creating more less-happy people, and whether this can evade the mere addition paradox. In case of logarithmic dependence of utility on resources available, the utility of this reallocation peaks at a certain “optimal happiness,” thus evading the repugnant conclusion. Any faster growth, and the repugnant conclusion survives. Not sure what −1 in (resources − 1)^(1/3) does, haven’t done the calculation...
Check the math on the formula I gave, it also peaks, and it grows faster than log.
I don’t think it’s that interesting if the paradox is not faced with a fixed level of resources, since the paradox still makes it hard to construct an intuitive formalization of our preferences about populations that gives intuitive answers to a variety of possible problems, and besides resources aren’t fixed. See this post.
The mere addition paradox is an argument that, if you accept some reasonable-seeming axioms about population ethics, then for any positive happiness level h, if we start from a population where everyone has happiness level h, then for any positive happiness level h’ < h, there is a larger population where everyone has happiness h’ that is preferable to the original population. Most people find this conterintuitive. The interesting thing is that either the counterintuitive result is true, or one of the assumptions is false.
This argument continues to apply regardless of how happiness scales with resources. The resource argument implies that the problem is not faced as stated when resources are fixed and happiness is logarithmic in resources, but (a) artificial thought experiments are useful if we are trying to formalize ethics, and (b) the problem is still faced if resources increase at the right rate as population increases. There is no need to update the Wikipedia page.
As I understand it, the idea behind this post dissolves the paradox because it allows us to reframe it in terms of possibility: for a fixed level of resources, there is a number of people for which equal distribution of resources produces optimal sum of utility.
Sure, you could get a greater sum from an enormous repugnant population at subsistence level, but that will take more resources than what you have to be created.
And what is more; even in that situation there is always another non-aberrant distribution of resources, that uses in total the same quantity of resources as the repugnant distribution, and produces greater sum of utility.
It doesn’t dissolve the paradox if it doesn’t show that you can construct a preference function over populations that doesn’t have any counterintuitive properties (while the repugnant conclusion argument implies it must have at least one counterintuitive property). At best, it shows that the relevant choices are unlikely to be faced in reality, such that even a “bad” preference function performs decently in the real world. But that doesn’t resolve the philosophical problem, much less dissolve it.
I don’t think it even shows that the relevant choices are unlikely to be faced in reality, since situations where you can get more resources by having a higher population are really common. (Consider: a higher population contains more workers)
It dissolves the RC for me, because it answers the question “What kind of cognitive algorithm, as felt from the inside, would generate the observed debate about “the Repugnant Conclusion”?” [grabbed from your link, substituted “free will” for “repugnant conclusion”].
I feel after reading that post that I do no longer feel that the RC is counterintuitive, and instead it feels self evident; I can channel the repugnancy to aberrant distributions of resources.
But granted, most people I have talked to do not feel the question is dissolved through this. I would be curious to see how many people stop being intuitively confused about RC after reading a similar line of reasoning.
The point about more workers ⇒ more resources is also an interesting thought. We could probably expand the model to vary resources with workers, and I would expect a similar conclusion for a reasonable model to hold: optimal sum of utility is not achieved in the extremes, but in a happy medium. Either that or each additional worker produces so much that even utility per capita grows as workers goes to infinity.
I don’t see how the post says anything about the cognitive algorithm generating the repugnant conclusion? It’s just saying the choices are unlikely to be faced in reality. I think people thinking through the repugnant conclusion are not necessarily thinking about resources, they might just be thinking about happiness levels (that’s how it’s usually stated, anyway).
Here’s a simple model. Total amount of resources = population + sqrt(population). Now we get a repugnant conclusion, it’s better to have as high a population as possible, and everyone is living off of 1 + epsilon resources.
The movement I was going through when thinking about the RC is something akin to “huh, happiness/utility is not a concept that I have an intuitive feeling for, so let me substitute happiness/utility for resources. Now clearly distributing the resources so thinly is very suboptimal. So let’s substitute back resources for utility/happiness and reach the conclusion that distributing the utility/happiness so thinly is very suboptimal, so I find this scenario repugnant.”
Yeah, the simple model you propose beats my initial intuition. It feels very off though. Maybe its missing diminishing returns and I am rigged to expect diminishing returns?
This is a novel argument about the applicability of the repugnant conclusion for a certain form of the happiness dependence on wealth. A faster-than-logarithmic growth does not let one avoid the conclusion even if the resources are constrained. It looks like a publishable result, let alone deserving a mention in the wikipedia.
Logarithmic growth does not let you avoid it either if resources increase as population increases at a certain rate.
The logarithm function isn’t even special here, it could just as well be that happiness = (resources − 1)^(1/3).
The point of the post was to investigate the reallocation of existing resources to maximize total utility by creating more less-happy people, and whether this can evade the mere addition paradox. In case of logarithmic dependence of utility on resources available, the utility of this reallocation peaks at a certain “optimal happiness,” thus evading the repugnant conclusion. Any faster growth, and the repugnant conclusion survives. Not sure what −1 in (resources − 1)^(1/3) does, haven’t done the calculation...
Check the math on the formula I gave, it also peaks, and it grows faster than log.
I don’t think it’s that interesting if the paradox is not faced with a fixed level of resources, since the paradox still makes it hard to construct an intuitive formalization of our preferences about populations that gives intuitive answers to a variety of possible problems, and besides resources aren’t fixed. See this post.