I think this post underrates two general rationalist skills, plus some assorted empirical facts. First, the two skills.
Avoiding the fallacy of the one-sided wager. The post talks about cost-benefit analysis, but in a complete cost-benefit analysis one has to consider the risks of both choices under offer, not just one. The post takes specific notice of the default course of action’s risks (money, tears, side effects) but focuses less on the risks of the alternative (e.g. toddlers winding up in the ER because they’re shitting themselves half to death from rotavirus).
Trying to look things up. I’ll pick this point up briefly below.
The rest of this comment is going to be scattershot, as it just runs through relevant facts I was inspired to check or dig up by different bits of the post.
I grew up in the US in the 80s and I don’t remember getting nearly this many. Is my memory faulty?
Probably not, there’s a simpler alternative explanation: adults remember basically nothing from before age 3 or so. However, we don’t even need that explanation, because...
I’m pretty sure it was more like 12 back in those days.
...the CDC actually didrecommend fewer vaccines in the 1980s (via). Though this wouldn’t address whatever local or state-level vaccine program you might’ve also experienced as a kid.
Is this all really necessary? Nobody likes getting shots, especially not children. What changed, anyway?
Scientists and clinicians developed and tested newer vaccines and better vaccines. Seriously! (I think this is an example of how people, even very educated people, tend to not understand on a gut level how much of microbiology’s progress was made just in the past 40 years.)
The CDC’s 1989 vaccination schedule and current schedule for normal children have only 3 vaccines in common: DTP/DTaP, HbCV/Hib, and MMR. That leaves 7 vaccines which appear on the current schedule but not the 1989 schedule. I looked each of the 7 up online and discovered the following.
A patent on hepatitis B vaccine was filed in 1969, but the earliest actual vaccine appears to have come only in the 1970s. It was shown effective in 1980 and made available in 1981, but the vaccine wasn’t ideal for mass vaccination because it came directly from carriers’ purified blood and was hard to mass produce. A superior recombinant vaccine came along only in 1986, the first of its kind for humans.
Rotavirus vaccines didn’t even get to the point of testing until the 1980s, and the first publicly introduced vaccine arrived only in 1998. And was then promptly withdrawn due to concern over a potential side effect — clinicians & manufacturers do keep an eye open for side effects!
Pneumococcal vaccines have been tested in people for about a century but were relatively ineffective and poorly understood, and their popularity waned with the rise of penicillin. Modern tests began again in 1968 and continued into the 1970s, resulting in US approval for a new vaccine in 1977. However, that vaccine covered only 14 variants of pneumococcus; an improved 23-variant version “covering about 87% of bacteremic pnemuococcal disease in the US” came out in 1983 and was recommended for routine vaccination only in 1984 (and then just in old adults).
Inactivated poliovirus wasn’t new (Salk famously developed it in the 1950s) but in the current CDC schedule it merely replaces the oral polio vaccine (OPV) used in the 1980s. The inactivated poliovirus vaccine is safer than the OPV in that children who receive the OPV can crap the live, active virus back out.
Influenza vaccines are even older, dating to the 1930s.
The first varicella vaccine was developed in Japan in the early 1970s, but its safety and worthiness were controversial. Clinical trials took place in the 1980s and the vaccine was licensed for use in Japan in 1986. The US followed suit in 1995.
So we have a mundane explanation for most of the newly introduced vaccines for healthy young children; today’s vaccines weren’t ready before the ’80s.
Now, I’m not an expert on immunology or epidemiology so I expect diving into the literature isn’t going to be fruitful; I won’t be able to ante up decades of education and experience fast enough.
Don’t do yourself down! A lot of material written by clinicians & researchers is out there, some of it deliberately targeted to laypeople, and you can often get some understanding even of technical material just by reading, recalling high-school biology, doing arithmetic, and looking things up in medical dictionaries. You won’t learn everything, but if the topic is important to you you can discover a lot by spending a few weekends with Google. (There are topics it’s hard to get a hold on as a layperson, but it’s hard to know whether a topic’s that difficult without trying to get a hold on it.)
Here’s how many shots each nation’s health care system recommends by the time children turn 5.
37 US
25 UK
I thought I’d take a closer look at these two countries (they’re both Anglophone, easiest to check). I get somewhat different numbers: 32 or 33 for the US/CDC (count the yellow boxes, remembering to count the annual flu virus 5 times) and 19 for the UK/NHS (only 4 anti-flu injections here; we don’t start them until age 2).
Also, while there’s a clear UK-US difference in the number of injections, it’s exaggerated by the UK lumping multiple vaccines together into one injection. The UK bundles the DTP, polio vaccine, Hib and hepatitis B vaccines; if I broke those out separately I’d get 29 injections instead of just 19 (and then I’d get 30 if I split the combined Hib/MenC vaccine). The numbers of distinct exposures to microbes are similar in the two countries.
When it comes to cultural and environment differences I have a hard time imagining that the orthodoxy varies because Hep A is a much bigger deal in the US. I presume the calculus changes based on your geographic neighbors, but is it a meaningful difference?
Probably the prevalence of hepatitis A in the US itself plays a bigger role. Trying to summarize hepatitis A’s prevalence in different countries is a bit of a pain, because prevalence varies a lot by age and cohort as well as place, but I did find a couple of kinda representative studies of the prevalence of hep. A antibodies in the US and UK. Immediately before (1988-1994) vaccine licensing a national survey found a prevalence of 32% in the US, while a nationwide UK study got a prevalence of 12% in unvaccinated individuals around 2002.
On the flip side of this argument: so what if we vaccinate kids against more diseases than other countries? Well, they’re not free. [...] Those other nations (presumably) ran cost-benefit analyses too and came to different conclusions. It would be nice if each country showed their work.
I haven’t digested your entire reply yet, but I’ll respond to this part.
Avoiding the fallacy of the one-sided wager. The post talks about cost-benefit analysis, but in a complete cost-benefit analysis one has to consider the risks of both choices under offer, not just one. The post takes specific notice of the default course of action’s risks (money, tears, side effects) but focuses less on the risks of the alternative (e.g. toddlers winding up in the ER because they’re shitting themselves half to death from rotavirus).
[...]
So we have a mundane explanation for most of the newly introduced vaccines for healthy young children; today’s vaccines weren’t ready before the ’80s.
The unstated (but I thought implied, my mistake) other-side of the wager was: I got many fewer vaccines growing up, and I’m fine.
Less anecdotally, I haven’t found a lot of evidence that adults are suffering horribly from diseases that children today are routinely vaccinated against. Is the cost-benefit of the added vaccines as good as the cost-benefit of the 80s era vaccines? Some arrows point to the US having a lower threshold for recommending them, given the variance between nations.
Less anecdotally, I haven’t found a lot of evidence that adults are suffering horribly from diseases that children today are routinely vaccinated against. Is the cost-benefit of the added vaccines as good as the cost-benefit of the 80s era vaccines? Some arrows point to the US having a lower threshold for recommending them, given the variance between nations.
A lot of the big childhood vaccines are things that kill kids (MMR, rotavirus, Hib). So you’ve got survivorship bias there.
As for the other stuff, a lot of the diseases that adults are suffering from that children are vaccinated against today don’t manifest as obvious infectious disease. If you know anyone who has ever had shingles, you know someone that had suffered from a disease that children today are routinely vaccinated against (varicella). If you know someone who has had cervical cancer or genital warts, you likely know someone who has suffered from HPV (highly recommended vaccine for preteens). If you know someone who has had liver cancer, there’s a chance it’s because of Hepatitis B (no vaccine for HCV yet :/).
Part of the cost benefit change is also due to the fact that we can actually treat a lot of these cancers now, instead of just “sorry, nothing we can do, go home and get your affairs in order.” For example, even though mortality rates from liver cancer might still be similar, 1-year survival rates have increased. So now, each case of a preventable cancer might cost us a lot more, so we’re much more motivated to prevent it.
Even if the cost benefit is not as good as the cost benefit of the 80s era vaccines, the fact that many not only have a favorable cost-benefit ratio, but are even cost saving should make them an strong choice for implementation.
I think this post underrates two general rationalist skills, plus some assorted empirical facts. First, the two skills.
Avoiding the fallacy of the one-sided wager. The post talks about cost-benefit analysis, but in a complete cost-benefit analysis one has to consider the risks of both choices under offer, not just one. The post takes specific notice of the default course of action’s risks (money, tears, side effects) but focuses less on the risks of the alternative (e.g. toddlers winding up in the ER because they’re shitting themselves half to death from rotavirus).
Trying to look things up. I’ll pick this point up briefly below.
The rest of this comment is going to be scattershot, as it just runs through relevant facts I was inspired to check or dig up by different bits of the post.
Probably not, there’s a simpler alternative explanation: adults remember basically nothing from before age 3 or so. However, we don’t even need that explanation, because...
...the CDC actually did recommend fewer vaccines in the 1980s (via). Though this wouldn’t address whatever local or state-level vaccine program you might’ve also experienced as a kid.
Scientists and clinicians developed and tested newer vaccines and better vaccines. Seriously! (I think this is an example of how people, even very educated people, tend to not understand on a gut level how much of microbiology’s progress was made just in the past 40 years.)
The CDC’s 1989 vaccination schedule and current schedule for normal children have only 3 vaccines in common: DTP/DTaP, HbCV/Hib, and MMR. That leaves 7 vaccines which appear on the current schedule but not the 1989 schedule. I looked each of the 7 up online and discovered the following.
A patent on hepatitis B vaccine was filed in 1969, but the earliest actual vaccine appears to have come only in the 1970s. It was shown effective in 1980 and made available in 1981, but the vaccine wasn’t ideal for mass vaccination because it came directly from carriers’ purified blood and was hard to mass produce. A superior recombinant vaccine came along only in 1986, the first of its kind for humans.
Rotavirus vaccines didn’t even get to the point of testing until the 1980s, and the first publicly introduced vaccine arrived only in 1998. And was then promptly withdrawn due to concern over a potential side effect — clinicians & manufacturers do keep an eye open for side effects!
Pneumococcal vaccines have been tested in people for about a century but were relatively ineffective and poorly understood, and their popularity waned with the rise of penicillin. Modern tests began again in 1968 and continued into the 1970s, resulting in US approval for a new vaccine in 1977. However, that vaccine covered only 14 variants of pneumococcus; an improved 23-variant version “covering about 87% of bacteremic pnemuococcal disease in the US” came out in 1983 and was recommended for routine vaccination only in 1984 (and then just in old adults).
Inactivated poliovirus wasn’t new (Salk famously developed it in the 1950s) but in the current CDC schedule it merely replaces the oral polio vaccine (OPV) used in the 1980s. The inactivated poliovirus vaccine is safer than the OPV in that children who receive the OPV can crap the live, active virus back out.
Influenza vaccines are even older, dating to the 1930s.
The first varicella vaccine was developed in Japan in the early 1970s, but its safety and worthiness were controversial. Clinical trials took place in the 1980s and the vaccine was licensed for use in Japan in 1986. The US followed suit in 1995.
Hepatitis A vaccine went on the market in the early 1990s. Based on playing with Google Scholar, I think the key human studies were done in the late 1980s and early 1990s.
So we have a mundane explanation for most of the newly introduced vaccines for healthy young children; today’s vaccines weren’t ready before the ’80s.
Don’t do yourself down! A lot of material written by clinicians & researchers is out there, some of it deliberately targeted to laypeople, and you can often get some understanding even of technical material just by reading, recalling high-school biology, doing arithmetic, and looking things up in medical dictionaries. You won’t learn everything, but if the topic is important to you you can discover a lot by spending a few weekends with Google. (There are topics it’s hard to get a hold on as a layperson, but it’s hard to know whether a topic’s that difficult without trying to get a hold on it.)
I thought I’d take a closer look at these two countries (they’re both Anglophone, easiest to check). I get somewhat different numbers: 32 or 33 for the US/CDC (count the yellow boxes, remembering to count the annual flu virus 5 times) and 19 for the UK/NHS (only 4 anti-flu injections here; we don’t start them until age 2).
Also, while there’s a clear UK-US difference in the number of injections, it’s exaggerated by the UK lumping multiple vaccines together into one injection. The UK bundles the DTP, polio vaccine, Hib and hepatitis B vaccines; if I broke those out separately I’d get 29 injections instead of just 19 (and then I’d get 30 if I split the combined Hib/MenC vaccine). The numbers of distinct exposures to microbes are similar in the two countries.
Probably the prevalence of hepatitis A in the US itself plays a bigger role. Trying to summarize hepatitis A’s prevalence in different countries is a bit of a pain, because prevalence varies a lot by age and cohort as well as place, but I did find a couple of kinda representative studies of the prevalence of hep. A antibodies in the US and UK. Immediately before (1988-1994) vaccine licensing a national survey found a prevalence of 32% in the US, while a nationwide UK study got a prevalence of 12% in unvaccinated individuals around 2002.
At least 3 of the 5 countries you discuss have shown work. See the US’s CDC, the UK’s Joint Committee on Vaccination and Immunisation, and Germany’s Standing Vaccination Committee at its Robert Koch Institute. Granted, I couldn’t find any dedicated webpages for Denmark or Sweden in a few minutes of searching, but that may be due to my non-knowledge of Danish & Swedish.
I haven’t digested your entire reply yet, but I’ll respond to this part.
[...]
The unstated (but I thought implied, my mistake) other-side of the wager was: I got many fewer vaccines growing up, and I’m fine.
Less anecdotally, I haven’t found a lot of evidence that adults are suffering horribly from diseases that children today are routinely vaccinated against. Is the cost-benefit of the added vaccines as good as the cost-benefit of the 80s era vaccines? Some arrows point to the US having a lower threshold for recommending them, given the variance between nations.
A lot of the big childhood vaccines are things that kill kids (MMR, rotavirus, Hib). So you’ve got survivorship bias there.
As for the other stuff, a lot of the diseases that adults are suffering from that children are vaccinated against today don’t manifest as obvious infectious disease. If you know anyone who has ever had shingles, you know someone that had suffered from a disease that children today are routinely vaccinated against (varicella). If you know someone who has had cervical cancer or genital warts, you likely know someone who has suffered from HPV (highly recommended vaccine for preteens). If you know someone who has had liver cancer, there’s a chance it’s because of Hepatitis B (no vaccine for HCV yet :/).
Of course, you don’t have to look anecdotally for that.
Part of the cost benefit change is also due to the fact that we can actually treat a lot of these cancers now, instead of just “sorry, nothing we can do, go home and get your affairs in order.” For example, even though mortality rates from liver cancer might still be similar, 1-year survival rates have increased. So now, each case of a preventable cancer might cost us a lot more, so we’re much more motivated to prevent it.
Even if the cost benefit is not as good as the cost benefit of the 80s era vaccines, the fact that many not only have a favorable cost-benefit ratio, but are even cost saving should make them an strong choice for implementation.