“mRNA vaccines get produced by hela cells which are a cell line based on human cells and as a result there’s less reason to expect food allergy development due to mRNA vaccines.”
This isn’t quite right. One of the major advantages of mRNA vaccines over, say, recombinant protein vaccines, is that you don’t need a cell line at all — once injected into your body, the mRNA finds its way into your own cells and your own cells begin producing the encoded protein—the business end of the vaccine—for you!
The process for growing up mRNA in the first place involves growing up a plasmid (circular DNA template) in bacteria, then isolating the DNA from the bacterial cells, linearizing the DNA template using an enzyme, then transcribing (turning DNA to RNA) the linearized template with RNA polymerase in vitro (i.e., not in cells at all — it’s just purified polymerase + DNA). But yes, no particular reason to expect food allergy development.
I’ve heard talk of an intermediate step of amplifying the relevant part of the plasmid up a couple trillion times via PCR to make purification easier, such that there’s less material from the original bacteria present per unit DNA and hitting your stringent composition targets is easier.
I read a while ago of a company uses Hela cells to produce the mRNA. From my latest reading, it seems like different companies produce their mRNA in different ways. Unfortunately, the production process is not easy to research.
“mRNA vaccines get produced by hela cells which are a cell line based on human cells and as a result there’s less reason to expect food allergy development due to mRNA vaccines.”
This isn’t quite right. One of the major advantages of mRNA vaccines over, say, recombinant protein vaccines, is that you don’t need a cell line at all — once injected into your body, the mRNA finds its way into your own cells and your own cells begin producing the encoded protein—the business end of the vaccine—for you!
The process for growing up mRNA in the first place involves growing up a plasmid (circular DNA template) in bacteria, then isolating the DNA from the bacterial cells, linearizing the DNA template using an enzyme, then transcribing (turning DNA to RNA) the linearized template with RNA polymerase in vitro (i.e., not in cells at all — it’s just purified polymerase + DNA). But yes, no particular reason to expect food allergy development.
I’ve heard talk of an intermediate step of amplifying the relevant part of the plasmid up a couple trillion times via PCR to make purification easier, such that there’s less material from the original bacteria present per unit DNA and hitting your stringent composition targets is easier.
I read a while ago of a company uses Hela cells to produce the mRNA. From my latest reading, it seems like different companies produce their mRNA in different ways. Unfortunately, the production process is not easy to research.