I don’t know what “break” means, these theories still give good predictions in everyday cases and it would be a silly reason to throw them out unless weird cases became common enough.
If perpetual motion machines are possible that changes quite a lot. It would mean searching for perpetual motion machines might be a good idea, and the typical ways people try to rule them out ultimately fail. Once perpetual motion machines are invented, they can become common.
But even e.g. the standard model isn’t such a theory!
Not totally exceptionless due to anomalies but it makes lots of claims at very high levels of precision (e.g. results of chemical experiments) and is precise at that level, not at a higher level than that. Similarly with the apple case. (Also, my guess is that there are precise possibly-true claims such as “anomalies to the standard model never cohere into particles that last more than 1 second”)
I don’t want to create a binary between “totally 100% exceptionless theory” and “not high precision at all”, there are intermediate levels even in computing. The point is that the theory needs to have precision corresponding to the brittleness of the inference chains it uses, or else the inference chain probably breaks somewhere.
If perpetual motion machines are possible that changes quite a lot. It would mean searching for perpetual motion machines might be a good idea, and the typical ways people try to rule them out ultimately fail. Once perpetual motion machines are invented, they can become common.
Not totally exceptionless due to anomalies but it makes lots of claims at very high levels of precision (e.g. results of chemical experiments) and is precise at that level, not at a higher level than that. Similarly with the apple case. (Also, my guess is that there are precise possibly-true claims such as “anomalies to the standard model never cohere into particles that last more than 1 second”)
I don’t want to create a binary between “totally 100% exceptionless theory” and “not high precision at all”, there are intermediate levels even in computing. The point is that the theory needs to have precision corresponding to the brittleness of the inference chains it uses, or else the inference chain probably breaks somewhere.