Perhaps it is, but I think it is worth spending some time investigating this and identifying the advantages and disadvantages of different resolutions.
Hmm, I’m not sure that it works. If you press 1, it doesn’t mean that you’re the first person woken. You need them to be something like semi-clones for that. And the memory trick is only for the Irrelevant Considerations argument. That leaves the prediction element which isn’t strictly necessary, but allows the other agents in your reference class (if you choose perfect life) to exist at the same time the original is making its decision, which makes this result even more surprising.
Agree about the semi-clones part. This is similar to the Prisoner’s Dilemma: if you know that everyone else cooperates (presses button 1), you’re better off defecting (pressing button 2). Usually I prefer to talk about problems where everyone has the same preference over outcomes, because in such problems UDT is a Nash equilibrium. Whereas in problems where people have selfish preferences but cooperate due to symmetry, like this problem or the symmetric Prisoner’s Dilemma, UDT still kinda works but stops being a Nash equilibrium. That’s what I was trying to point out in this post.
Perhaps it is, but I think it is worth spending some time investigating this and identifying the advantages and disadvantages of different resolutions.
Hmm, I’m not sure that it works. If you press 1, it doesn’t mean that you’re the first person woken. You need them to be something like semi-clones for that. And the memory trick is only for the Irrelevant Considerations argument. That leaves the prediction element which isn’t strictly necessary, but allows the other agents in your reference class (if you choose perfect life) to exist at the same time the original is making its decision, which makes this result even more surprising.
Agree about the semi-clones part. This is similar to the Prisoner’s Dilemma: if you know that everyone else cooperates (presses button 1), you’re better off defecting (pressing button 2). Usually I prefer to talk about problems where everyone has the same preference over outcomes, because in such problems UDT is a Nash equilibrium. Whereas in problems where people have selfish preferences but cooperate due to symmetry, like this problem or the symmetric Prisoner’s Dilemma, UDT still kinda works but stops being a Nash equilibrium. That’s what I was trying to point out in this post.