Sorry, I didn’t understand the question (and what you meant by “The loss function is undefined after training.”).
After thinking about this more, I now think that my original description of this failure mode might be confusing: maybe it is more accurate to describe it as an inner optimizer problem. The guiding logic here is that if there are no inner optimizers then the question answering system, which was trained by supervised learning, “attempts” (during inference) to minimize the expected loss function value as defined by the original distribution from which the training examples were sampled; and any other goal system is the result of inner optimizers.
Sorry, I didn’t understand the question (and what you meant by “The loss function is undefined after training.”).
After thinking about this more, I now think that my original description of this failure mode might be confusing: maybe it is more accurate to describe it as an inner optimizer problem. The guiding logic here is that if there are no inner optimizers then the question answering system, which was trained by supervised learning, “attempts” (during inference) to minimize the expected loss function value as defined by the original distribution from which the training examples were sampled; and any other goal system is the result of inner optimizers.
(I need to think more about this)