The reason wave function collapse is so surprising, is because not collapsing seems to be the norm. In fact, the best gravimeters are made by interfering the wavefunctions of entire molecules (ref: atom interferometer). We only see “wave function collapse” in particular kinds of operations, which we then define as observations. So, it isn’t surprising that we observe wave function collapse—that’s how the word “observe” is defined. What is surprising is that collapse even occurs to be observed, when we know it is not how the universe usually operates.
Maybe, there’s an evolutionary advantage to thinking of yourself as distinct from the surrounding universe, that way your brain can simulate counterfactual worlds where you might take different actions. Will you actually take different actions? No, but thinking will make the one action you do take better. Since people are hardwired to think their observations are not necessarily interactions, updating in the other direction has significant surprisal.
The reason wave function collapse is so surprising, is because not collapsing seems to be the norm. In fact, the best gravimeters are made by interfering the wavefunctions of entire molecules (ref: atom interferometer). We only see “wave function collapse” in particular kinds of operations, which we then define as observations. So, it isn’t surprising that we observe wave function collapse—that’s how the word “observe” is defined. What is surprising is that collapse even occurs to be observed, when we know it is not how the universe usually operates.
Maybe, there’s an evolutionary advantage to thinking of yourself as distinct from the surrounding universe, that way your brain can simulate counterfactual worlds where you might take different actions. Will you actually take different actions? No, but thinking will make the one action you do take better. Since people are hardwired to think their observations are not necessarily interactions, updating in the other direction has significant surprisal.