The goal is to have a system where there are no unlabeled parameters ideally. That would be the world modeling system. It then would build a world model that would have many unlabeled parameters. By understanding the world modeler system you can ensure that the world model has certain properties. E.g. there is some property (which I don’t know) of how to make the world model not contain dangerous minds.
E.g. imagine the AI is really good at world modeling, and now it models you (you are part of the world) so accurately that you are now basically copied into the AI. Now you might try to escape the AI, which would actually be really good because then you could save the world as a speed intelligence (assuming the model of you would really accurate which is probably wouldn’t be). But if it models another mind (maybe it considers dangerous adversaries) then maybe they could also escape, and would not be aligned.
By understanding the system you could put constraints on what world models can be generated, such that all generated world models can’t contain such dangerous minds, or at least make such minds much less likely.
I propose that a more realistic example would be “classifying images via a ConvNet with 100,000,000 weights” versus “classifying images via 5,000,000 lines of Python code involving 1,000,000 nonsense variable names”. The latter is obviously less inscrutable on the margin but it’s not a huge difference.
Python code is a discrete structure. You can do proofs on more easily than for a NN. You could try to apply program transformations on it that preserve functional equality, trying to optimize for some measure of “human understandable structure”. There are image classification alogrithms iirc that are worse than NN but much more interpretable, and these algorithms would at most be hundets of lines of code I guess (haven’t really looked a lot at them).
Anyway, it’s fine to brainstorm on things like this, but I claim that you can do that brainstorming perfectly well by assuming that the world model is a Bayes net (or use OpenCog AtomSpace, or Soar, or whatever), or even just talk about it generically.
You give examples of recognizing problems. I tried to give examples of how you can solve these problems. I’m not brainstorming on “how could this system fail”. Instead I understand something, and then I just notice without really trying, that now I can do a thing that seems very useful, like making the system not think about human psycology given certain constraints.
Probably I completely failed at making clear why I think that, because my explanation was terrible. In any case I think your suggested brainstorming this is completely different from the thing that I am actually doing.
To me it just seems that limiting the depth of a tree search is better that limiting the compute of a black box neural network. It seems like you can get a much better grip on what it means to limit the depth, and what this implies about the system behavior, when you actually understand how tree search works. Of cause tree search here is only an example.
The goal is to have a system where there are no unlabeled parameters ideally. That would be the world modeling system. It then would build a world model that would have many unlabeled parameters.
Yup, this is what we’re used to today:
there’s an information repository,
there’s a learning algorithm that updates the information repository,
there’s an inference algorithm that queries the information repository,
both the learning algorithm and the inference algorithm consist of legible code written by humans, with no inscrutable unlabeled parameters,
the high-dimensional space [or astronomically-large set, if it’s discrete] of all possible configurations of the information repository is likewise defined by legible code written by humans, with no inscrutable unlabeled parameters,
the only inscrutable unlabeled parameters are in the content of the information repository, after the learning algorithm has been running for a while.
So for example, in LLM pretraining, the learning algorithm is backprop, the inference algorithm is a forward pass, and the information repository is the weights of a transformer-architecture neural net. There’s nothing inscrutable about backprop, nor about a forward pass. We fully understand what those are doing and how. Backprop calculates the gradient, etc.
That’s just one example. There are many other options! The learning algorithm could involve TD learning. The inference algorithm could involve tree search, or MCMC, or whatever. The information repository could involve a learned value function and/or a learned policy and/or a learned Bayes net and/or a learned OpenCog AtomSpace or whatever. But in all cases, those six bullets above are valid.
So anyway, this is already how ML works, and I’m very confident that it will remain true until TAI, for reasons here. And this is a widespread consensus.
By understanding the world modeler system you can ensure that the world model has certain properties. E.g. there is some property (which I don’t know) of how to make the world model not contain dangerous minds.
There’s a very obvious failure mode in which: the world-model models the world, and the planner plans, and the value function calculates values, etc. … and at the end of all that, the AI system as a whole hatches and executes a plan to wipe out humanity. The major unsolved problem is: how do we confidently avoid that?
Then separately, there’s a different, weird, exotic type of failure mode, where, for example, there’s a full-fledged AGI agent, one that can do out-of-the-box foresighted planning etc., but this agent is not working within the designed AGI architecture (where the planner plans etc. as above), but rather the whole agent is hiding entirely within the world-model. I think that, in this kind of system, the risk of this exotic failure mode is very low, and can be straightforwardly mitigated to become even lower still. I wrote about it a long time ago at Thoughts on safety in predictive learning.
I really think we should focus first and foremost on the very obvious failure mode, which again is an unsolved problem that is very likely to manifest, and we should put aside the weird exotic failure mode at least until we’ve solved the big obvious one.
When we put aside the exotic failure mode and focus on the main one, then we’re no longer worried about “the world model contains dangerous minds”, but rather we’re worried about “something(s) in the world model has been flagged as desirable, that shouldn’t have been flagged as desirable”. This is a hard problem not only because of the interpretability issue (I think we agree that the contents of the world-model are inscrutable, and I hope we agree that those inscrutable contents will include both good things and bad things), but also because of concept extrapolation / goal misgeneralization (i.e., the AGI needs to have opinions about plans that bring it somewhere out of distribution). It’s great if you want to think about that problem, but you don’t need to “understand intelligence” for that, you can just assume that the world-model is a Bayes net or whatever, and jump right in! (Maybe start here!)
To me it just seems that limiting the depth of a tree search is better that limiting the compute of a black box neural network. It seems like you can get a much better grip on what it means to limit the depth, and what this implies about the system behavior, when you actually understand how tree search works. Of cause tree search here is only an example.
Right, but the ability to limit the depth of a tree search is basically useless for getting you to safe and beneficial AGI, because you don’t know the depth that allows dangerous plans, nor do you know that dangerous plans won’t actually be simpler (less depth) than intended plans. This is a very general problem. This problem applies equally well to limiting the compute of a black box, limiting the number of steps of MCMC, limiting the amount of (whatever OpenCog AtomSpace does), etc.
[You can also potentially use tree search depth to try to enforce guarantees about myopia, but that doesn’t really work for other reasons.]
Python code is a discrete structure. You can do proofs on more easily than for a NN. You could try to apply program transformations on it that preserve functional equality, trying to optimize for some measure of “human understandable structure”. There are image classification alogrithms iirc that are worse than NN but much more interpretable, and these algorithms would at most be hundets of lines of code I guess (haven’t really looked a lot at them).
“Hundreds of lines” is certainly wrong because you can recognize easily tens of thousands of distinct categories of visual objects. Probably hundreds of thousands.
Proofs sound nice, but what do you think you can realistically prove that will help with Safe and Beneficial AGI? You can’t prove things about what AGI will do in the real world, because the real world will not be encoded in your formal proof system. (pace davidad).
“Applying program transformations that optimize for human understandable structure” sounds nice, but only gets you to “inscrutable” from “even more inscrutable”. The visual world is complex. The algorithm can’t be arbitrarily simple, while still capturing that complexity. Cf. “computational irreducibility”.
I’m not brainstorming on “how could this system fail”. Instead I understand something, and then I just notice without really trying, that now I can do a thing that seems very useful, like making the system not think about human psycology given certain constraints.
What I’m trying to do in this whole comment is point you towards various “no-go theorems” that Eliezer probably figured out in 2006 and put onto Arbital somewhere.
Here’s an analogy. It’s appealing to say: “I don’t understand string theory, but if I did, then I would notice some new obvious way to build a perpetual motion machine.”. But no, you won’t. We can rule out perpetual motion machines from very general principles that don’t rely on how string theory works.
By the same token, it’s appealing to say: “I don’t understand intelligence, but if I did, then I would notice some new obvious way to guarantee that an AGI won’t try to manipulate humans.”. But no, you won’t. There are deep difficulties that we know you’re going to run into, based on very general principles that don’t rely on the data format for the world-model etc.
I suggest to think harder about the shape of the solution—getting all the way to Safe & Beneficial AGI. I think you’ll come to realize that figuring out the data format for the world-model etc. is not only dangerous (because it’s AGI capabilities research) but doesn’t even help appreciably with safety anyway.
The goal is to have a system where there are no unlabeled parameters ideally. That would be the world modeling system. It then would build a world model that would have many unlabeled parameters. By understanding the world modeler system you can ensure that the world model has certain properties. E.g. there is some property (which I don’t know) of how to make the world model not contain dangerous minds.
E.g. imagine the AI is really good at world modeling, and now it models you (you are part of the world) so accurately that you are now basically copied into the AI. Now you might try to escape the AI, which would actually be really good because then you could save the world as a speed intelligence (assuming the model of you would really accurate which is probably wouldn’t be). But if it models another mind (maybe it considers dangerous adversaries) then maybe they could also escape, and would not be aligned.
By understanding the system you could put constraints on what world models can be generated, such that all generated world models can’t contain such dangerous minds, or at least make such minds much less likely.
Python code is a discrete structure. You can do proofs on more easily than for a NN. You could try to apply program transformations on it that preserve functional equality, trying to optimize for some measure of “human understandable structure”. There are image classification alogrithms iirc that are worse than NN but much more interpretable, and these algorithms would at most be hundets of lines of code I guess (haven’t really looked a lot at them).
You give examples of recognizing problems. I tried to give examples of how you can solve these problems. I’m not brainstorming on “how could this system fail”. Instead I understand something, and then I just notice without really trying, that now I can do a thing that seems very useful, like making the system not think about human psycology given certain constraints.
Probably I completely failed at making clear why I think that, because my explanation was terrible. In any case I think your suggested brainstorming this is completely different from the thing that I am actually doing.
To me it just seems that limiting the depth of a tree search is better that limiting the compute of a black box neural network. It seems like you can get a much better grip on what it means to limit the depth, and what this implies about the system behavior, when you actually understand how tree search works. Of cause tree search here is only an example.
Yup, this is what we’re used to today:
there’s an information repository,
there’s a learning algorithm that updates the information repository,
there’s an inference algorithm that queries the information repository,
both the learning algorithm and the inference algorithm consist of legible code written by humans, with no inscrutable unlabeled parameters,
the high-dimensional space [or astronomically-large set, if it’s discrete] of all possible configurations of the information repository is likewise defined by legible code written by humans, with no inscrutable unlabeled parameters,
the only inscrutable unlabeled parameters are in the content of the information repository, after the learning algorithm has been running for a while.
So for example, in LLM pretraining, the learning algorithm is backprop, the inference algorithm is a forward pass, and the information repository is the weights of a transformer-architecture neural net. There’s nothing inscrutable about backprop, nor about a forward pass. We fully understand what those are doing and how. Backprop calculates the gradient, etc.
That’s just one example. There are many other options! The learning algorithm could involve TD learning. The inference algorithm could involve tree search, or MCMC, or whatever. The information repository could involve a learned value function and/or a learned policy and/or a learned Bayes net and/or a learned OpenCog AtomSpace or whatever. But in all cases, those six bullets above are valid.
So anyway, this is already how ML works, and I’m very confident that it will remain true until TAI, for reasons here. And this is a widespread consensus.
There’s a very obvious failure mode in which: the world-model models the world, and the planner plans, and the value function calculates values, etc. … and at the end of all that, the AI system as a whole hatches and executes a plan to wipe out humanity. The major unsolved problem is: how do we confidently avoid that?
Then separately, there’s a different, weird, exotic type of failure mode, where, for example, there’s a full-fledged AGI agent, one that can do out-of-the-box foresighted planning etc., but this agent is not working within the designed AGI architecture (where the planner plans etc. as above), but rather the whole agent is hiding entirely within the world-model. I think that, in this kind of system, the risk of this exotic failure mode is very low, and can be straightforwardly mitigated to become even lower still. I wrote about it a long time ago at Thoughts on safety in predictive learning.
I really think we should focus first and foremost on the very obvious failure mode, which again is an unsolved problem that is very likely to manifest, and we should put aside the weird exotic failure mode at least until we’ve solved the big obvious one.
When we put aside the exotic failure mode and focus on the main one, then we’re no longer worried about “the world model contains dangerous minds”, but rather we’re worried about “something(s) in the world model has been flagged as desirable, that shouldn’t have been flagged as desirable”. This is a hard problem not only because of the interpretability issue (I think we agree that the contents of the world-model are inscrutable, and I hope we agree that those inscrutable contents will include both good things and bad things), but also because of concept extrapolation / goal misgeneralization (i.e., the AGI needs to have opinions about plans that bring it somewhere out of distribution). It’s great if you want to think about that problem, but you don’t need to “understand intelligence” for that, you can just assume that the world-model is a Bayes net or whatever, and jump right in! (Maybe start here!)
Right, but the ability to limit the depth of a tree search is basically useless for getting you to safe and beneficial AGI, because you don’t know the depth that allows dangerous plans, nor do you know that dangerous plans won’t actually be simpler (less depth) than intended plans. This is a very general problem. This problem applies equally well to limiting the compute of a black box, limiting the number of steps of MCMC, limiting the amount of (whatever OpenCog AtomSpace does), etc.
[You can also potentially use tree search depth to try to enforce guarantees about myopia, but that doesn’t really work for other reasons.]
“Hundreds of lines” is certainly wrong because you can recognize easily tens of thousands of distinct categories of visual objects. Probably hundreds of thousands.
Proofs sound nice, but what do you think you can realistically prove that will help with Safe and Beneficial AGI? You can’t prove things about what AGI will do in the real world, because the real world will not be encoded in your formal proof system. (pace davidad).
“Applying program transformations that optimize for human understandable structure” sounds nice, but only gets you to “inscrutable” from “even more inscrutable”. The visual world is complex. The algorithm can’t be arbitrarily simple, while still capturing that complexity. Cf. “computational irreducibility”.
What I’m trying to do in this whole comment is point you towards various “no-go theorems” that Eliezer probably figured out in 2006 and put onto Arbital somewhere.
Here’s an analogy. It’s appealing to say: “I don’t understand string theory, but if I did, then I would notice some new obvious way to build a perpetual motion machine.”. But no, you won’t. We can rule out perpetual motion machines from very general principles that don’t rely on how string theory works.
By the same token, it’s appealing to say: “I don’t understand intelligence, but if I did, then I would notice some new obvious way to guarantee that an AGI won’t try to manipulate humans.”. But no, you won’t. There are deep difficulties that we know you’re going to run into, based on very general principles that don’t rely on the data format for the world-model etc.
I suggest to think harder about the shape of the solution—getting all the way to Safe & Beneficial AGI. I think you’ll come to realize that figuring out the data format for the world-model etc. is not only dangerous (because it’s AGI capabilities research) but doesn’t even help appreciably with safety anyway.