High g-factor can get you to the top 25% or even top 10% of the population in an awful lot areas all by itself. If only 5% of the population has ever formally studied and practiced chess strategy, then 95th percentile g-factor may be enough to hit 90th percentile of chess skill without any formal study at all (though the exact numbers depend on correlation of g-factor with formal study). Problem is, g-factor only counts once; we don’t want to double-count it by saying e.g. “assume top 10% in physics and philosophy are independent”.
Specialist expertise is mostly strongly anticorrelated. Most people pick one specialized career path, and even the people who “generalize” don’t usually tackle more than 2 or 3 areas at a deep level—our lives are not that long.
Put those two together, and it means that above-average-but-below-expert skill levels mostly won’t compound, but expert skill levels in multiple fields can yield a lot more bits than the independence calculation suggests—e.g. if almost nobody studies both topology and anthropology.
I do think the “how many bits does this get me?” approach is a useful way to think about it, but I’m not yet sure what set of assumptions is reasonable for quantification.
In regard to bullet 1, I would caution against relying on this. If you show up to many fields expecting to smash through it because you’re smart, you’ll be torn to bits in many many fields. This is because the fields that are useful are already being dominated by people who are good at things to the extent that they’re economically or emotionally valuable.
The exact example of chess makes this clear. If a smart LWer thinks “Oh, I’ll get to the chess leaderboards because I’m really smart”, they are going to find out after some weeks of studying that… everyone else on the leaderboards is smart too!
Two gotchas to bear in mind there:
High g-factor can get you to the top 25% or even top 10% of the population in an awful lot areas all by itself. If only 5% of the population has ever formally studied and practiced chess strategy, then 95th percentile g-factor may be enough to hit 90th percentile of chess skill without any formal study at all (though the exact numbers depend on correlation of g-factor with formal study). Problem is, g-factor only counts once; we don’t want to double-count it by saying e.g. “assume top 10% in physics and philosophy are independent”.
Specialist expertise is mostly strongly anticorrelated. Most people pick one specialized career path, and even the people who “generalize” don’t usually tackle more than 2 or 3 areas at a deep level—our lives are not that long.
Put those two together, and it means that above-average-but-below-expert skill levels mostly won’t compound, but expert skill levels in multiple fields can yield a lot more bits than the independence calculation suggests—e.g. if almost nobody studies both topology and anthropology.
I do think the “how many bits does this get me?” approach is a useful way to think about it, but I’m not yet sure what set of assumptions is reasonable for quantification.
In regard to bullet 1, I would caution against relying on this. If you show up to many fields expecting to smash through it because you’re smart, you’ll be torn to bits in many many fields. This is because the fields that are useful are already being dominated by people who are good at things to the extent that they’re economically or emotionally valuable.
The exact example of chess makes this clear. If a smart LWer thinks “Oh, I’ll get to the chess leaderboards because I’m really smart”, they are going to find out after some weeks of studying that… everyone else on the leaderboards is smart too!