The heat lost is then [..] 0.05 fJ/bit/mm. Quite low compared to Jacob’s ~10 fJ/mm “theoretical lower bound.”
In the original article I discuss interconnect wire energy, not a “theoretical lower bound” for any wire energy communication method—and immediately point out reversible communication methods (optical, superconducting) that do not dissipate the wire energy.
Coax cable devices seem to use around 1 to 5 fJ/bit/mm at a few W of power, or a few OOM more than your model predicts here—so I’m curious what you think that discrepancy is, without necessarily disagreeing with the model.
I describe a simple model of wire bit energy for EM wave transmission in coax cable here which seems physically correct but also predicts a bit energy distance range somewhat below observed.
Active copper cable at 0.5W for 40G over 15 meters is ~1e−21J/nm, assuming it actually hits 40G at the max length of 15m.
I can’t access the linked article, but an active cable is not simple to model because its listed power includes the active components. We are interested in the loss within the wire between the active components.
This source has specs for a passive copper wire capable of up to 40G @5m using <1W, which works out to ~5e−21J/nm, or a bit less.
They write <1 W for every length of wire, so all you can say is <5 fJ/mm. You don’t know how much less. They are likely writing <1 W for comparison to active wires that consume more than a W. Also, these cables seem to have a powered transceiver built-in on each end that multiplex out the signal to four twisted pair 10G lines.
Compare to 10G from here which. may use up to 5W to hit up to 10G at 100M, for ~5e−21J/nm.
Again, these have a powered transceiver on each end.
So for all of these, all we know is that the sum of the losses of the powered components and the wire itself are of order 1 fJ/mm. Edit: I would guess that probably the powered components have very low power draw (I would guess 10s of mW) and the majority of the loss is attenuation in the wire.
The numbers I gave essentially are the theoretical minimum energy loss per bit per mm of that particular cable at that particular signal power. It’s not surprising that multiple twisted pair cables do worse. They’ll have higher attenuation, lower bandwidth, the standard transceivers on either side require larger signals because they have cheaper DAC/ADCs, etc. Also, their error correction is not perfect, and they don’t make full use of their channel capacity. In return, the cables are cheap, flexible, standard, etc.
In the original article I discuss interconnect wire energy, not a “theoretical lower bound” for any wire energy communication method—and immediately point out reversible communication methods (optical, superconducting) that do not dissipate the wire energy.
Coax cable devices seem to use around 1 to 5 fJ/bit/mm at a few W of power, or a few OOM more than your model predicts here—so I’m curious what you think that discrepancy is, without necessarily disagreeing with the model.
I describe a simple model of wire bit energy for EM wave transmission in coax cable here which seems physically correct but also predicts a bit energy distance range somewhat below observed.
I can’t access the linked article, but an active cable is not simple to model because its listed power includes the active components. We are interested in the loss within the wire between the active components.
They write <1 W for every length of wire, so all you can say is <5 fJ/mm. You don’t know how much less. They are likely writing <1 W for comparison to active wires that consume more than a W. Also, these cables seem to have a powered transceiver built-in on each end that multiplex out the signal to four twisted pair 10G lines.
Again, these have a powered transceiver on each end.
So for all of these, all we know is that the sum of the losses of the powered components and the wire itself are of order 1 fJ/mm. Edit: I would guess that probably the powered components have very low power draw (I would guess 10s of mW) and the majority of the loss is attenuation in the wire.
The numbers I gave essentially are the theoretical minimum energy loss per bit per mm of that particular cable at that particular signal power. It’s not surprising that multiple twisted pair cables do worse. They’ll have higher attenuation, lower bandwidth, the standard transceivers on either side require larger signals because they have cheaper DAC/ADCs, etc. Also, their error correction is not perfect, and they don’t make full use of their channel capacity. In return, the cables are cheap, flexible, standard, etc.
There’s nothing special about kT/1 nm.