Value creation depends entirely on you. Like any field, to make major advances you will need to tackle big problems and come up with creative solutions.
In my opinion (as a biomedical engineer) the field is currently stalled in some areas (and advancing rapidly in others) but is ripe for a major paradigm shift which will accelerate progress. Some verifiably false ideas about basic biology remain commonly accepted in the field, and will need to be reinvestigated for progress to continue.
As for the grad student debt issue, most major research universities in the USA pay students in doctoral programs. It is very much possible to obtain a PhD in the life sciences or bioengineering with zero debt, if you have good spending habits while in school. I managed to actually accrue some investments during graduate school, rather than debt.
I would only recommend getting into the field if you have a strong passion for solving medical problems, and have some clear ideas about how you will attack these problems very differently than others already working on them. If you don’t have such clear ideas, I would start by reading journal articles and books on your own. Personally, I think it’s valuable to seek out little known unusual experimental results and iconoclastic theories, as these are the leads that are being missed by others already working on the same problems. The more distinct your education is, the more it will complement the almost cookie-cutter identical educations of your peers, and allow you to become a major catalyst in problem solving.
Some verifiably false ideas about basic biology remain commonly accepted in the field, and will need to be reinvestigated for progress to continue.
I would love to hear more of your thoughts on this.
As for the grad student debt issue, most major research universities in the USA pay students in doctoral programs. It is very much possible to obtain a PhD in the life sciences or bioengineering with zero debt, if you have good spending habits while in school.
At a major research university in a cheap medium-sized town (at least compared to where I grew up) I am saving 25% of my income—though once one of my fellowships wears off that will probably drop to 10% or less unless I change my spending habits.
I would love to hear more of your thoughts on this.
I’ve been planning on writing some articles on here, but I don’t feel comfortable throwing out outlandish statements without explaining all of my reasoning and evidence in detail… and I don’t have time to do so yet. This is a project at least on the order of the Timeless Physics sequences.
This is just the tip of the iceberg but one thing I have been looking at recently is Gilbert Ling’s Association-Induction hypothesis which is centered around the idea that gel-like phase shifts in the cytoplasm are central to regulating and fueling many biological reactions. Initially this came from his observation that poisoning energy production in cells doesn’t destroy ion partitioning, they still retain potassium and exclude sodium. He also found that if you slice cells in half, or otherwise remove or destroy the membrane in many different ways, this ion partitioning persists. It seems to be supported by an incredible amount of empirical evidence, yet is virtually unknown. There was some mainstream debate in the 1970s but the idea seems to have faded away without any convincing evidence against it. I think this could be partly due to Ling’s attitude of “everything you know is wrong, and the stuff you’re studying doesn’t even exist,” which is hard for other scientists to stomach. Personally I think his discoveries are better viewed as additional phenomena within the cell, rather than in opposition to other discoveries. The book “Cells, Gels and the Engines of Life” by Gerald Pollack (Amazon Link) is a relatively recent, and easy to read introduction to this idea.
Are you familiar with this idea, and if so what is your opinion?
Yes, I would still be doing biomedical engineering given what I now know. However, I am driven mostly by curiosity and a desire to answer medical questions- if I worked in another field, I would likely be doing so to support myself while I work on these medical questions in my free time. I am a ‘dry lab’ bioengineer. If my primary goal was to make a high income, I would instead do software development.
If I could change anything, it would be seeking out problem-oriented instead of method-oriented mentors. Scientists and engineers can often be divided into two categories: those who are experts at a given method and look for problems to apply it to, and those who are experts at a given problem and look for tools to attack it with. Both can be productive strategies. I have a problem-oriented perspective, but most of my mentors have been method-oriented and don’t understand my unwavering focus on specific seemingly intractable problems.
I am interested in understanding the molecular basis of chronic diseases such as metabolic syndrome. I am also interested in understanding the relationship between various homeostasis mechanisms and small molecule drug activity.
If I could change anything, it would be seeking out problem-oriented instead of method-oriented mentors. Scientists and engineers can often be divided into two categories: those who are experts at a given method and look for problems to apply it to, and those who are experts at a given problem and look for tools to attack it with. Both can be productive strategies. I have a problem-oriented perspective, but most of my mentors have been method-oriented and don’t understand my unwavering focus on specific seemingly intractable problems.
I definitely get what you mean and I’ve been blessed with a problem-oriented mentor. However, I don’t really have a strategy to seek out some similar mentors and worry that in engineering it’s a lot more likely to find method-oriented persons. I’m wondering if you have any advice on this.
(My supposition: Non-applied mathematicians are dominantly problem oriented, but for problems that usually don’t matter. Programmers and applied mathematicians (like Operational Research guys) will probably experience a more even distribution between the two modes, however I would guess that it would lean towards problem-oriented as the underlying ontology of phenomena are necessarily modeled from scratch (in physics and chem most of our ontology is mapped, but not so in social problems except maybe with economics).)
Lately I’ve been less motivated to engage because of the intractability of the problems that grabbed my attention in the first place (intelligence amplification/cognition), even though it would be the more satisfying field from a curiosity standpoint (I like science and BME is highly integrated between all scientific disciplines).
What kind of paradigm shifts do you think will occur for biology in the future? Where are the current controversies for biology right now?
However, I don’t really have a strategy to seek out some similar mentors and worry that in engineering it’s a lot more likely to find method-oriented persons. I’m wondering if you have any advice on this.
No, I’m not even sure how to easily tell if someone is method or problem oriented without at least meeting them and talking to them. If you find any ideas on this please share them with me.
intractability of the problems that grabbed my attention in the first place (intelligence amplification/cognition)
That is a very hard problem. This is wild speculation but have you looked at the concept of hormesis? Maybe it’s possible to engineer the right conditions under which the brain improves it’s abilities on it’s own. I think in some cases living organisms can be considered ‘functional systems’ which adapt as much as possible to maintain function in the face of a stress or challenge. This adaptation is limited in part by overall stress levels, and metabolic rate/energy availability. Focused strategies to overcome these limitations may increase adaptive ability. This may require developing a deeper understanding of both stress and metabolism.
Consider a weight lifter that can lift over 1,000lbs, something with probably no evolutionary precedent. They get this way with a combination of very low overall stress, a high nutrient diet that raises the metabolic rate and overall energy availability, a progressively increasing and highly specific stressor, and long rest periods. Perhaps a similar approach could be applied to ‘train’ improved cognitive abilities? One obvious difference is that our brain is limited in size, so there may be tradeoffs involved when we improve one specific skill or ability. I imagine this idea would sound very naive to neuroscientists.
What kind of paradigm shifts do you think will occur for biology in the future?
I can’t predict the future, but this is a fun question good for more wild speculation. I think genetics will be seen as increasingly less significant, and heritable traits and information will be found encoded in many different molecules and structures in living cells.
I also think progressively impaired energy availability (impaired oxidative metabolism) will be viewed as a central phenomena occurring in most degenerative diseases, aging, and failure to adapt to stressors. This simple paradigm will help focus research to understand, fix, and prevent the underlying problems, enabling a shift away from medicine focused on managing symptoms. This is a popular concept in many old medicine systems (such as chinese medicine) but it has limited effectiveness without a deep understanding of the underlying molecular mechanisms, and how to manipulate them.
Thanks for your thoughtful comment. I’d love to hear more. I need some time to formulate good questions though. If you’re willing to share your email address with me, you can email me at jsinick@gmail.com
Value creation depends entirely on you. Like any field, to make major advances you will need to tackle big problems and come up with creative solutions.
In my opinion (as a biomedical engineer) the field is currently stalled in some areas (and advancing rapidly in others) but is ripe for a major paradigm shift which will accelerate progress. Some verifiably false ideas about basic biology remain commonly accepted in the field, and will need to be reinvestigated for progress to continue.
As for the grad student debt issue, most major research universities in the USA pay students in doctoral programs. It is very much possible to obtain a PhD in the life sciences or bioengineering with zero debt, if you have good spending habits while in school. I managed to actually accrue some investments during graduate school, rather than debt.
I would only recommend getting into the field if you have a strong passion for solving medical problems, and have some clear ideas about how you will attack these problems very differently than others already working on them. If you don’t have such clear ideas, I would start by reading journal articles and books on your own. Personally, I think it’s valuable to seek out little known unusual experimental results and iconoclastic theories, as these are the leads that are being missed by others already working on the same problems. The more distinct your education is, the more it will complement the almost cookie-cutter identical educations of your peers, and allow you to become a major catalyst in problem solving.
I would love to hear more of your thoughts on this.
At a major research university in a cheap medium-sized town (at least compared to where I grew up) I am saving 25% of my income—though once one of my fellowships wears off that will probably drop to 10% or less unless I change my spending habits.
I’ve been planning on writing some articles on here, but I don’t feel comfortable throwing out outlandish statements without explaining all of my reasoning and evidence in detail… and I don’t have time to do so yet. This is a project at least on the order of the Timeless Physics sequences.
This is just the tip of the iceberg but one thing I have been looking at recently is Gilbert Ling’s Association-Induction hypothesis which is centered around the idea that gel-like phase shifts in the cytoplasm are central to regulating and fueling many biological reactions. Initially this came from his observation that poisoning energy production in cells doesn’t destroy ion partitioning, they still retain potassium and exclude sodium. He also found that if you slice cells in half, or otherwise remove or destroy the membrane in many different ways, this ion partitioning persists. It seems to be supported by an incredible amount of empirical evidence, yet is virtually unknown. There was some mainstream debate in the 1970s but the idea seems to have faded away without any convincing evidence against it. I think this could be partly due to Ling’s attitude of “everything you know is wrong, and the stuff you’re studying doesn’t even exist,” which is hard for other scientists to stomach. Personally I think his discoveries are better viewed as additional phenomena within the cell, rather than in opposition to other discoveries. The book “Cells, Gels and the Engines of Life” by Gerald Pollack (Amazon Link) is a relatively recent, and easy to read introduction to this idea.
Are you familiar with this idea, and if so what is your opinion?
I voiced interest in making a career switch into BME. Would you still be doing biomedical engineering now if you knew what you now know about it? What would you change and why?
Yes, I would still be doing biomedical engineering given what I now know. However, I am driven mostly by curiosity and a desire to answer medical questions- if I worked in another field, I would likely be doing so to support myself while I work on these medical questions in my free time. I am a ‘dry lab’ bioengineer. If my primary goal was to make a high income, I would instead do software development.
If I could change anything, it would be seeking out problem-oriented instead of method-oriented mentors. Scientists and engineers can often be divided into two categories: those who are experts at a given method and look for problems to apply it to, and those who are experts at a given problem and look for tools to attack it with. Both can be productive strategies. I have a problem-oriented perspective, but most of my mentors have been method-oriented and don’t understand my unwavering focus on specific seemingly intractable problems.
Which specific problems are you talking about?
I am interested in understanding the molecular basis of chronic diseases such as metabolic syndrome. I am also interested in understanding the relationship between various homeostasis mechanisms and small molecule drug activity.
I definitely get what you mean and I’ve been blessed with a problem-oriented mentor. However, I don’t really have a strategy to seek out some similar mentors and worry that in engineering it’s a lot more likely to find method-oriented persons. I’m wondering if you have any advice on this.
(My supposition: Non-applied mathematicians are dominantly problem oriented, but for problems that usually don’t matter. Programmers and applied mathematicians (like Operational Research guys) will probably experience a more even distribution between the two modes, however I would guess that it would lean towards problem-oriented as the underlying ontology of phenomena are necessarily modeled from scratch (in physics and chem most of our ontology is mapped, but not so in social problems except maybe with economics).)
Lately I’ve been less motivated to engage because of the intractability of the problems that grabbed my attention in the first place (intelligence amplification/cognition), even though it would be the more satisfying field from a curiosity standpoint (I like science and BME is highly integrated between all scientific disciplines).
What kind of paradigm shifts do you think will occur for biology in the future? Where are the current controversies for biology right now?
No, I’m not even sure how to easily tell if someone is method or problem oriented without at least meeting them and talking to them. If you find any ideas on this please share them with me.
That is a very hard problem. This is wild speculation but have you looked at the concept of hormesis? Maybe it’s possible to engineer the right conditions under which the brain improves it’s abilities on it’s own. I think in some cases living organisms can be considered ‘functional systems’ which adapt as much as possible to maintain function in the face of a stress or challenge. This adaptation is limited in part by overall stress levels, and metabolic rate/energy availability. Focused strategies to overcome these limitations may increase adaptive ability. This may require developing a deeper understanding of both stress and metabolism.
Consider a weight lifter that can lift over 1,000lbs, something with probably no evolutionary precedent. They get this way with a combination of very low overall stress, a high nutrient diet that raises the metabolic rate and overall energy availability, a progressively increasing and highly specific stressor, and long rest periods. Perhaps a similar approach could be applied to ‘train’ improved cognitive abilities? One obvious difference is that our brain is limited in size, so there may be tradeoffs involved when we improve one specific skill or ability. I imagine this idea would sound very naive to neuroscientists.
I can’t predict the future, but this is a fun question good for more wild speculation. I think genetics will be seen as increasingly less significant, and heritable traits and information will be found encoded in many different molecules and structures in living cells.
I also think progressively impaired energy availability (impaired oxidative metabolism) will be viewed as a central phenomena occurring in most degenerative diseases, aging, and failure to adapt to stressors. This simple paradigm will help focus research to understand, fix, and prevent the underlying problems, enabling a shift away from medicine focused on managing symptoms. This is a popular concept in many old medicine systems (such as chinese medicine) but it has limited effectiveness without a deep understanding of the underlying molecular mechanisms, and how to manipulate them.
Thanks for your thoughtful comment. I’d love to hear more. I need some time to formulate good questions though. If you’re willing to share your email address with me, you can email me at jsinick@gmail.com
e-mail sent