However, I don’t really have a strategy to seek out some similar mentors and worry that in engineering it’s a lot more likely to find method-oriented persons. I’m wondering if you have any advice on this.
No, I’m not even sure how to easily tell if someone is method or problem oriented without at least meeting them and talking to them. If you find any ideas on this please share them with me.
intractability of the problems that grabbed my attention in the first place (intelligence amplification/cognition)
That is a very hard problem. This is wild speculation but have you looked at the concept of hormesis? Maybe it’s possible to engineer the right conditions under which the brain improves it’s abilities on it’s own. I think in some cases living organisms can be considered ‘functional systems’ which adapt as much as possible to maintain function in the face of a stress or challenge. This adaptation is limited in part by overall stress levels, and metabolic rate/energy availability. Focused strategies to overcome these limitations may increase adaptive ability. This may require developing a deeper understanding of both stress and metabolism.
Consider a weight lifter that can lift over 1,000lbs, something with probably no evolutionary precedent. They get this way with a combination of very low overall stress, a high nutrient diet that raises the metabolic rate and overall energy availability, a progressively increasing and highly specific stressor, and long rest periods. Perhaps a similar approach could be applied to ‘train’ improved cognitive abilities? One obvious difference is that our brain is limited in size, so there may be tradeoffs involved when we improve one specific skill or ability. I imagine this idea would sound very naive to neuroscientists.
What kind of paradigm shifts do you think will occur for biology in the future?
I can’t predict the future, but this is a fun question good for more wild speculation. I think genetics will be seen as increasingly less significant, and heritable traits and information will be found encoded in many different molecules and structures in living cells.
I also think progressively impaired energy availability (impaired oxidative metabolism) will be viewed as a central phenomena occurring in most degenerative diseases, aging, and failure to adapt to stressors. This simple paradigm will help focus research to understand, fix, and prevent the underlying problems, enabling a shift away from medicine focused on managing symptoms. This is a popular concept in many old medicine systems (such as chinese medicine) but it has limited effectiveness without a deep understanding of the underlying molecular mechanisms, and how to manipulate them.
No, I’m not even sure how to easily tell if someone is method or problem oriented without at least meeting them and talking to them. If you find any ideas on this please share them with me.
That is a very hard problem. This is wild speculation but have you looked at the concept of hormesis? Maybe it’s possible to engineer the right conditions under which the brain improves it’s abilities on it’s own. I think in some cases living organisms can be considered ‘functional systems’ which adapt as much as possible to maintain function in the face of a stress or challenge. This adaptation is limited in part by overall stress levels, and metabolic rate/energy availability. Focused strategies to overcome these limitations may increase adaptive ability. This may require developing a deeper understanding of both stress and metabolism.
Consider a weight lifter that can lift over 1,000lbs, something with probably no evolutionary precedent. They get this way with a combination of very low overall stress, a high nutrient diet that raises the metabolic rate and overall energy availability, a progressively increasing and highly specific stressor, and long rest periods. Perhaps a similar approach could be applied to ‘train’ improved cognitive abilities? One obvious difference is that our brain is limited in size, so there may be tradeoffs involved when we improve one specific skill or ability. I imagine this idea would sound very naive to neuroscientists.
I can’t predict the future, but this is a fun question good for more wild speculation. I think genetics will be seen as increasingly less significant, and heritable traits and information will be found encoded in many different molecules and structures in living cells.
I also think progressively impaired energy availability (impaired oxidative metabolism) will be viewed as a central phenomena occurring in most degenerative diseases, aging, and failure to adapt to stressors. This simple paradigm will help focus research to understand, fix, and prevent the underlying problems, enabling a shift away from medicine focused on managing symptoms. This is a popular concept in many old medicine systems (such as chinese medicine) but it has limited effectiveness without a deep understanding of the underlying molecular mechanisms, and how to manipulate them.