If the preference ordering over lotteries violates independence, then it will not be representable as maximising EU with respect to the probabilities in the lotteries (by the vNM theorem). Do you think it’s a mistake then to think of UDT as “EU maximisation, where the thing you’re choosing is policies”? If so, I believe this is the most common way UDT is framed in LW discussions, and so this would be a pretty important point for you to make more visibly (unless you’ve already made this point before in a post, in which case I’d love to read it).
I think UDT is as you say. I think it is also important to clarify that you are not updating on your observations when you decide on a policy. (If you did, it wouldn’t really be a function from observations to actions, but it is important to emphasize in UDT.)
Note that I am using “updateless” differently than “UDT”. By updateless, I mostly mean anything that is not performing Bayesian updates and forgetting the other possible worlds when it makes observations. UDT is more of a specific proposal. “Updateless” is more of negative property, defined by lack of updating.
I have been trying to write a big post on utility, and haven’t yet, and decided it would be good to give a quick argument here because of the question. The only posts I remember making against utility are in the geometric rationality sequence, especially this post.
Thanks, the clarification of UDT vs. “updateless” is helpful.
But now I’m a bit confused as to why you would still regard UDT as “EU maximisation, where the thing you’re choosing is policies”. If I have a preference ordering over lotteries that violates independence, the vNM theorem implies that I cannot be represented as maximising EU.
In fact, after reading Vladimir_Nesov’s comment, it doesn’t even seem fully accurate to view UDT taking in a preference ordering over lotteries. Here’s the way I’m thinking of UDT: your prior over possible worlds uniquely determines the probabilities of a single lottery L, and selecting a global policy is equivalent to choosing the outcomes of this lottery L. Now different UDT agents may prefer different lotteries, but this is in no sense expected utility maximisation. This is simply: some UDT agents think one lottery is the best, other might think another is the best. There is nothing in this story that resembles a cardinal utility function over outcomes that the agents are multiplying with their prior probabilities to maximise EU with respect to.
It seems that to get an EU representation of UDT, you need to impose coherence on the preference ordering over lotteries (i.e. over different prior distributions), but since UDT agents come with some fixed prior over worlds which is not updated, it’s not at all clear why rationality would demand coherence in your preference between lotteries (let alone coherence that satisfies independence).
Yeah, I don’t have a specific UDT proposal in mind. Maybe instead of “updateless” I should say “the kind of mind that might get counterfactually mugged” as in this example.
Okay this is very clarifying, thanks!
If the preference ordering over lotteries violates independence, then it will not be representable as maximising EU with respect to the probabilities in the lotteries (by the vNM theorem). Do you think it’s a mistake then to think of UDT as “EU maximisation, where the thing you’re choosing is policies”? If so, I believe this is the most common way UDT is framed in LW discussions, and so this would be a pretty important point for you to make more visibly (unless you’ve already made this point before in a post, in which case I’d love to read it).
I think UDT is as you say. I think it is also important to clarify that you are not updating on your observations when you decide on a policy. (If you did, it wouldn’t really be a function from observations to actions, but it is important to emphasize in UDT.)
Note that I am using “updateless” differently than “UDT”. By updateless, I mostly mean anything that is not performing Bayesian updates and forgetting the other possible worlds when it makes observations. UDT is more of a specific proposal. “Updateless” is more of negative property, defined by lack of updating.
I have been trying to write a big post on utility, and haven’t yet, and decided it would be good to give a quick argument here because of the question. The only posts I remember making against utility are in the geometric rationality sequence, especially this post.
Thanks, the clarification of UDT vs. “updateless” is helpful.
But now I’m a bit confused as to why you would still regard UDT as “EU maximisation, where the thing you’re choosing is policies”. If I have a preference ordering over lotteries that violates independence, the vNM theorem implies that I cannot be represented as maximising EU.
In fact, after reading Vladimir_Nesov’s comment, it doesn’t even seem fully accurate to view UDT taking in a preference ordering over lotteries. Here’s the way I’m thinking of UDT: your prior over possible worlds uniquely determines the probabilities of a single lottery L, and selecting a global policy is equivalent to choosing the outcomes of this lottery L. Now different UDT agents may prefer different lotteries, but this is in no sense expected utility maximisation. This is simply: some UDT agents think one lottery is the best, other might think another is the best. There is nothing in this story that resembles a cardinal utility function over outcomes that the agents are multiplying with their prior probabilities to maximise EU with respect to.
It seems that to get an EU representation of UDT, you need to impose coherence on the preference ordering over lotteries (i.e. over different prior distributions), but since UDT agents come with some fixed prior over worlds which is not updated, it’s not at all clear why rationality would demand coherence in your preference between lotteries (let alone coherence that satisfies independence).
Yeah, I don’t have a specific UDT proposal in mind. Maybe instead of “updateless” I should say “the kind of mind that might get counterfactually mugged” as in this example.