I expect this to generally be a more junior group, often not fully employed in these roles, with eg the average age and funding level of the orgs that are being led particularly low (and some of the orgs being more informal).
Here is the full list of the alignment orgs who had at least one researcher complete the survey (and who also elected to share what org they are working for): OpenAI, Meta, Anthropic, FHI, CMU, Redwood Research, Dalhousie University, AI Safety Camp, Astera Institute, Atlas Computing Institute, Model Evaluation and Threat Research (METR, formerly ARC Evals), Apart Research, Astra Fellowship, AI Standards Lab, Confirm Solutions Inc., PAISRI, MATS, FOCAL, EffiSciences, FAR AI, aintelope, Constellation, Causal Incentives Working Group, Formalizing Boundaries, AISC.
~80% of the alignment sample is currently receiving funding of some form to pursue their work, and ~75% have been doing this work for >1 year. Seems to me like this is basically the population we were intending to sample.
One additional factor for my abandoning it was that I couldn’t imagine it drawing a useful response population anyway; the sample mentioned above is a significant surprise to me (even with my skepticism around the makeup of that population). Beyond the reasons I already described, I felt that it being done by a for-profit org that is a newcomer and probably largely unknown would dissuade a lot of people from responding (and/or providing fully candid answers to some questions).
Your expectation while taking the survey about whether we were going to be able to get a good sample does not say much about whether we did end up getting a good sample. Things that better tell us whether or not we got a good sample are, eg, the quality/distribution of the represented orgs and the quantity of actively-funded technical alignment researchers (both described above).
All in all, I expect that the respondent population skews heavily toward those who place a lower value on their time and are less involved.
Note that the survey took people ~15 minutes to complete and resulted in a $40 donation being made to a high-impact organization, which puts our valuation of an hour of their time at ~$160 (roughly equivalent to the hourly rate of someone who makes ~$330k annually). Assuming this population would generally donate a portion of their income to high-impact charities/organizations by default, taking the survey actually seems to probably have been worth everyone’s time in terms of EV.
Here is the full list of the alignment orgs who had at least one researcher complete the survey (and who also elected to share what org they are working for): OpenAI, Meta, Anthropic, FHI, CMU, Redwood Research, Dalhousie University, AI Safety Camp, Astera Institute, Atlas Computing Institute, Model Evaluation and Threat Research (METR, formerly ARC Evals), Apart Research, Astra Fellowship, AI Standards Lab, Confirm Solutions Inc., PAISRI, MATS, FOCAL, EffiSciences, FAR AI, aintelope, Constellation, Causal Incentives Working Group, Formalizing Boundaries, AISC.
~80% of the alignment sample is currently receiving funding of some form to pursue their work, and ~75% have been doing this work for >1 year. Seems to me like this is basically the population we were intending to sample.
Your expectation while taking the survey about whether we were going to be able to get a good sample does not say much about whether we did end up getting a good sample. Things that better tell us whether or not we got a good sample are, eg, the quality/distribution of the represented orgs and the quantity of actively-funded technical alignment researchers (both described above).
Note that the survey took people ~15 minutes to complete and resulted in a $40 donation being made to a high-impact organization, which puts our valuation of an hour of their time at ~$160 (roughly equivalent to the hourly rate of someone who makes ~$330k annually). Assuming this population would generally donate a portion of their income to high-impact charities/organizations by default, taking the survey actually seems to probably have been worth everyone’s time in terms of EV.