This doesn’t matter much, as the constant factor needed still grows as fast as the asymptotic bound. GPT does not have a big enough constant factor. (This objection has always been true of asymptotic bounds.)
The solution is IMO just to consider the number of computations performed per generated token as some function of the model size, and once we’ve identified a suitable asymptotic order on the function, we can say intelligent things like “the smallest network capable of solving a problem in complexity class C of size N is X”.
Or if our asymptotic bounds are not tight enough:
“No economically feasible LLM can solve problems in complexity class C of size >= N”.
(Where economically feasible may be something defined by aggregate global economic resources or similar, depending on how tight you want the bound to be.)
Regardless, we can still obtain meaningful impossibility results.
This doesn’t matter much, as the constant factor needed still grows as fast as the asymptotic bound. GPT does not have a big enough constant factor. (This objection has always been true of asymptotic bounds.)
The solution is IMO just to consider the number of computations performed per generated token as some function of the model size, and once we’ve identified a suitable asymptotic order on the function, we can say intelligent things like “the smallest network capable of solving a problem in complexity class C of size N is X”.
Or if our asymptotic bounds are not tight enough:
“No economically feasible LLM can solve problems in complexity class C of size >= N”.
(Where economically feasible may be something defined by aggregate global economic resources or similar, depending on how tight you want the bound to be.)
Regardless, we can still obtain meaningful impossibility results.