This is simply the best and most beautiful book ever written by the human species...
Wow, I had no idea Eliezer loved it that much. I own it, and I once read through a few chapters, but it was mostly a collection of (albeit very intelligent) puzzles and ideas that I was familiar with, so I stopped. Am I missing something, or am I just already not “an average person”?
I read the whole book and also felt meh about it. It might feel different when it’s your first introduction to the ideas, though. I remember being very impressed by Strategy of Conflict because the ideas in it were new to me.
I read the book in high school and loved it. It was my first introduction to the ideas. And there was an unusual extra psychological factor boosting my interest. One of my math teachers, a brilliant, very eccentric guy once saw the book in my hand, and started to shout at me very-very loudly in front of a crowd about how evil this book was. It was a crazy scene. He had a serious problem with reductionism.
This teacher taught us ultrafilters and Löwenheim-Skolem when we were 17, but he also told us that set theory is false. I confronted him: if set theory is false, surely one of the axioms must be false, so which ones does he object to? He told me the whole thing is stupid. This didn’t satisfy me, so I kept asking, and finally he said that for example, the pair axiom is false. It tells us that we can put things into pairs without this affecting them in any way. If I was put together into a pair set with a beautiful woman, and I wasn’t affected by this, that would mean that I am impotent. Set theory makes mathematics impotent. I didn’t completely buy his story on set theory, but it definitely influenced my thinking somewhat. On the other hand, I chose to ignore his outburst against reductionism.
Without revealing my grounds (except that I’ve known many mathematicians), I would bet at even odds that your high-school math teacher grew up behind the Iron Curtain. Am I right?
You are very right. I am from Hungary. The Iron curtain fell exactly the year when my GEB story took place. The guy was a promising young mathematician before becoming a high-school teacher of gifted students at the famous Fazekas high school. Although he was never bitter about it at all, I suspect this change of course was somehow related to the fact that he was a sympathizer of the underground democratic opposition.
Excellent- I’d actually assumed you had grown up in the English-speaking world and that you just happened to have an Eastern European teacher for some reason, even though that’s a much less likely way for it to happen. Still, it’s nice to see I can trust my instincts about the national character of particular mathematical eccentricities- something about the style of the example reminded me strongly of Erdős (except for the personal irony it would have had for him).
I felt that, when I read the book the first time and hadn’t encountered many of the concepts before, his way of introducing the ideas was hard to understand. After I had been introduced to the same ideas in a more traditional way, I didn’t think his explanations told me anything that I didn’t know.
(For the most part, that is—I do seem to recall that his explanation of inductive proofs allowed me to get the concept a little better, after I had already had the concept explained to me elsewhere.)
I’ve tried reading it a couple of times, managing to read maybe about one third or one half. When I first read it, many years ago, it was good at really teaching the notion of formal systems and the fact that they were really only governed by their own axioms and rules, but that’s about all that I got out of it.
Isn’t that true for any book that some people like it and others not so much, and that it depends on what the person in question is already familiar with? I liked GEB because it was an easy to read good explanation of basic ideas of formal systems and some other stuff as well. If I were already familiar with the ideas, I wouldn’t probably finish reading it. But that doesn’t mean the book is bad, in the same way as the fact that I don’t laugh at a joke I have heard ten times before doesn’t mean the joke is bad.
The second half of the book is of a very different nature than the first, though it’s still quite possible you’d be familiar with it. If you have the generalized anti-zombie principle firmly in hand in advance, it will be a bit less world-changing.
Wow, I had no idea Eliezer loved it that much. I own it, and I once read through a few chapters, but it was mostly a collection of (albeit very intelligent) puzzles and ideas that I was familiar with, so I stopped. Am I missing something, or am I just already not “an average person”?
I read the whole book and also felt meh about it. It might feel different when it’s your first introduction to the ideas, though. I remember being very impressed by Strategy of Conflict because the ideas in it were new to me.
I read the book in high school and loved it. It was my first introduction to the ideas. And there was an unusual extra psychological factor boosting my interest. One of my math teachers, a brilliant, very eccentric guy once saw the book in my hand, and started to shout at me very-very loudly in front of a crowd about how evil this book was. It was a crazy scene. He had a serious problem with reductionism.
This teacher taught us ultrafilters and Löwenheim-Skolem when we were 17, but he also told us that set theory is false. I confronted him: if set theory is false, surely one of the axioms must be false, so which ones does he object to? He told me the whole thing is stupid. This didn’t satisfy me, so I kept asking, and finally he said that for example, the pair axiom is false. It tells us that we can put things into pairs without this affecting them in any way. If I was put together into a pair set with a beautiful woman, and I wasn’t affected by this, that would mean that I am impotent. Set theory makes mathematics impotent. I didn’t completely buy his story on set theory, but it definitely influenced my thinking somewhat. On the other hand, I chose to ignore his outburst against reductionism.
Without revealing my grounds (except that I’ve known many mathematicians), I would bet at even odds that your high-school math teacher grew up behind the Iron Curtain. Am I right?
You are very right. I am from Hungary. The Iron curtain fell exactly the year when my GEB story took place. The guy was a promising young mathematician before becoming a high-school teacher of gifted students at the famous Fazekas high school. Although he was never bitter about it at all, I suspect this change of course was somehow related to the fact that he was a sympathizer of the underground democratic opposition.
Excellent- I’d actually assumed you had grown up in the English-speaking world and that you just happened to have an Eastern European teacher for some reason, even though that’s a much less likely way for it to happen. Still, it’s nice to see I can trust my instincts about the national character of particular mathematical eccentricities- something about the style of the example reminded me strongly of Erdős (except for the personal irony it would have had for him).
I felt that, when I read the book the first time and hadn’t encountered many of the concepts before, his way of introducing the ideas was hard to understand. After I had been introduced to the same ideas in a more traditional way, I didn’t think his explanations told me anything that I didn’t know.
(For the most part, that is—I do seem to recall that his explanation of inductive proofs allowed me to get the concept a little better, after I had already had the concept explained to me elsewhere.)
I’ve tried reading it a couple of times, managing to read maybe about one third or one half. When I first read it, many years ago, it was good at really teaching the notion of formal systems and the fact that they were really only governed by their own axioms and rules, but that’s about all that I got out of it.
Isn’t that true for any book that some people like it and others not so much, and that it depends on what the person in question is already familiar with? I liked GEB because it was an easy to read good explanation of basic ideas of formal systems and some other stuff as well. If I were already familiar with the ideas, I wouldn’t probably finish reading it. But that doesn’t mean the book is bad, in the same way as the fact that I don’t laugh at a joke I have heard ten times before doesn’t mean the joke is bad.
I didn’t see what the fuss was about either. Keep meaning to go back and give it another chance...
The second half of the book is of a very different nature than the first, though it’s still quite possible you’d be familiar with it. If you have the generalized anti-zombie principle firmly in hand in advance, it will be a bit less world-changing.