Because you don’t train the inputs, you’re trying to train parameters, but the gradients stop cold there if you just treat them as blackboxes, and this seems like it’s abusing the term ‘stochastic’ (what does the size of minibatches being smaller than the full dataset have to do with this?). I still don’t understand what you think Transformers are doing differently vs RNNs in terms of what kind of processing of history they are doing and why Transformers can’t meta-learn in the same way as RNNs internally.
I am not sure what do you mean by “stop cold?” It has to with minibatches, because in offline learning your datapoints can (and usually are) regarded as sampled from some IID process, and here we also have a stochastic environment (but not IID). I dont see anything unusual about this, the MDP in RL is virtually always allowed to be stochastic.
As to the other thing, I already conceded that transformers are no worse than RNNs in this sense, so you seem to be barging into an open door here?
Because you don’t train the inputs, you’re trying to train parameters, but the gradients stop cold there if you just treat them as blackboxes, and this seems like it’s abusing the term ‘stochastic’ (what does the size of minibatches being smaller than the full dataset have to do with this?). I still don’t understand what you think Transformers are doing differently vs RNNs in terms of what kind of processing of history they are doing and why Transformers can’t meta-learn in the same way as RNNs internally.
I am not sure what do you mean by “stop cold?” It has to with minibatches, because in offline learning your datapoints can (and usually are) regarded as sampled from some IID process, and here we also have a stochastic environment (but not IID). I dont see anything unusual about this, the MDP in RL is virtually always allowed to be stochastic.
As to the other thing, I already conceded that transformers are no worse than RNNs in this sense, so you seem to be barging into an open door here?