Eliezer: From all the books that created me, I was never once warned that Science is not strict enough.
I am trying to figure out exactly what your better methodology is. Is it
(1) Science + Occam’s razor, with the razor used to choose between experimentally indistinguishable theories?
(2) Bayes’s Law, with Science somehow merely being an application of the law?
(3) Science, Bayes, and an assortment of introspective methods meant to prevent wasting one’s time on a-priori extravagant hypotheses?
I do not think anyone will argue with the advice that if a theory contains entities which are predictively irrelevant, you should try doing without them. Whether “Science” is merely an instance of “Bayes” will be a little more contentious; to employ probability theory requires structure—a space of possibilities, a prior on that space—which may not be available. The utility of the psychological tips is even more open to question, though it’s surely useful to at least know about this perspective.
Some of the examples you use I have to disagree with. I do not think many worlds can be shown to be the clear favorite among quantum interpretations, either by the simple argument that it’s orthodoxy minus collapse and therefore simpler than orthodoxy, nor by some more complicated argument that also tries to incorporate qualitative principles like adherence to the spirit of relativity. You are also getting Penrose wrong, as I wrote above. People adopt quantum mind theories for a variety of reasons. For example, I do it because I do not believe in the reducibility of consciousness to a collective or swarm phenomenon, and some of the quantum ontologies permit options that don’t exist in classical atomism. But Penrose did it because it gave him a means of physically implementing neural hypercomputation, which in turn he deemed to be necessary because of the incompleteness theorems. He was not trying to explain qualia, so the fact that his hypothesis introduces no insight on that front is irrelevant.
The most profound criticism I can make of science as it is presently conducted is that it assumes a type of ontology which is necessarily wrong; and this really only applies to sciences which touch on something ontologically fundamental. The ontology assumed might be called objectified mathematical materialism; it is necessarily wrong because conscious experience manifestly contains properties which cannot be obtained by any combination of the entities which that ontology says are all that exists; but this is irrelevant to, say, a biologist, unless their work really does touch upon consciousness. A biologist can utilize the everyday subjective ontology, and the quantitative world-image of the natural sciences founded upon physics, and not have them clash in an impossible way.
Your younger self sensed, correctly, that something more is needed. If he made an error, I would say it was in supposing that more of the same could make a difference: that extra mathematical physics can solve the hard problem. Even if it’s there, and causally relevant, it’s just more physics. What’s needed is new ontology. Realist fundamental physics is ontology, so a change there does mean new ontology, but if it’s just mathematics, it’s not enough. We have to remember that subjectively speaking, the mathematical image of the world was created by deliberately excluding from consideration certain aspects of experience as “secondary”, and that the hard problem of consciousness arises from this unfinished business. I’ve given my prescription in comments elsewhere: transcendental idealism, transcendental phenomenology, and a quantum monadology in which the qualities revealed in appearance are taken to be the ontological content behind the mathematical formalism used to describe the physical correlates of consciousness.
Even though they are based on the impoverished ontology of mathematical physics, according to which quantity and causality are everything, I do think some of your qualitative methodological principles are still relevant to these deeper investigations. But they would have to be applied in a frame of mind which no longer tries to ground everything in mathematics as we know it, and remains open to aspects of being which fall radically outside anything we know how to formalize at present.
Eliezer: From all the books that created me, I was never once warned that Science is not strict enough.
I am trying to figure out exactly what your better methodology is. Is it
(1) Science + Occam’s razor, with the razor used to choose between experimentally indistinguishable theories?
(2) Bayes’s Law, with Science somehow merely being an application of the law?
(3) Science, Bayes, and an assortment of introspective methods meant to prevent wasting one’s time on a-priori extravagant hypotheses?
I do not think anyone will argue with the advice that if a theory contains entities which are predictively irrelevant, you should try doing without them. Whether “Science” is merely an instance of “Bayes” will be a little more contentious; to employ probability theory requires structure—a space of possibilities, a prior on that space—which may not be available. The utility of the psychological tips is even more open to question, though it’s surely useful to at least know about this perspective.
Some of the examples you use I have to disagree with. I do not think many worlds can be shown to be the clear favorite among quantum interpretations, either by the simple argument that it’s orthodoxy minus collapse and therefore simpler than orthodoxy, nor by some more complicated argument that also tries to incorporate qualitative principles like adherence to the spirit of relativity. You are also getting Penrose wrong, as I wrote above. People adopt quantum mind theories for a variety of reasons. For example, I do it because I do not believe in the reducibility of consciousness to a collective or swarm phenomenon, and some of the quantum ontologies permit options that don’t exist in classical atomism. But Penrose did it because it gave him a means of physically implementing neural hypercomputation, which in turn he deemed to be necessary because of the incompleteness theorems. He was not trying to explain qualia, so the fact that his hypothesis introduces no insight on that front is irrelevant.
The most profound criticism I can make of science as it is presently conducted is that it assumes a type of ontology which is necessarily wrong; and this really only applies to sciences which touch on something ontologically fundamental. The ontology assumed might be called objectified mathematical materialism; it is necessarily wrong because conscious experience manifestly contains properties which cannot be obtained by any combination of the entities which that ontology says are all that exists; but this is irrelevant to, say, a biologist, unless their work really does touch upon consciousness. A biologist can utilize the everyday subjective ontology, and the quantitative world-image of the natural sciences founded upon physics, and not have them clash in an impossible way.
Your younger self sensed, correctly, that something more is needed. If he made an error, I would say it was in supposing that more of the same could make a difference: that extra mathematical physics can solve the hard problem. Even if it’s there, and causally relevant, it’s just more physics. What’s needed is new ontology. Realist fundamental physics is ontology, so a change there does mean new ontology, but if it’s just mathematics, it’s not enough. We have to remember that subjectively speaking, the mathematical image of the world was created by deliberately excluding from consideration certain aspects of experience as “secondary”, and that the hard problem of consciousness arises from this unfinished business. I’ve given my prescription in comments elsewhere: transcendental idealism, transcendental phenomenology, and a quantum monadology in which the qualities revealed in appearance are taken to be the ontological content behind the mathematical formalism used to describe the physical correlates of consciousness.
Even though they are based on the impoverished ontology of mathematical physics, according to which quantity and causality are everything, I do think some of your qualitative methodological principles are still relevant to these deeper investigations. But they would have to be applied in a frame of mind which no longer tries to ground everything in mathematics as we know it, and remains open to aspects of being which fall radically outside anything we know how to formalize at present.