‘Seminar’ announcement: me talking quarter-bakedly about products, co-products, deferring, and transparency. 3 pm PT tomorrow (actually 3:10 because that’s how time works at Berkeley).
I was daydreaming during a talk earlier today (my fault, the talk was great), and noticed that one diagram in Dylan Hadfield-Menell’s off-switch paper looked like the category-theoretic definition of the product of two objects. Now, in category theory, the ‘opposite’ of a product is a co-product, which in set theory is the disjoint union. So if the product of two actions is deferring to a human about which action to take, what’s the co-product? I had an idea about that which I’ll keep secret until the talk, when I’ll reveal it (you can also read the title to figure it out). I promise that I won’t prepare any slides or think very hard about what I’m going to say. I also won’t really know what I’m talking about, so hopefully one of you will. The talk will happen in my personal zoom room. Message me for the passcode.
‘Seminar’ announcement: me talking quarter-bakedly about products, co-products, deferring, and transparency. 3 pm PT tomorrow (actually 3:10 because that’s how time works at Berkeley).
I was daydreaming during a talk earlier today (my fault, the talk was great), and noticed that one diagram in Dylan Hadfield-Menell’s off-switch paper looked like the category-theoretic definition of the product of two objects. Now, in category theory, the ‘opposite’ of a product is a co-product, which in set theory is the disjoint union. So if the product of two actions is deferring to a human about which action to take, what’s the co-product? I had an idea about that which I’ll keep secret until the talk, when I’ll reveal it (you can also read the title to figure it out). I promise that I won’t prepare any slides or think very hard about what I’m going to say. I also won’t really know what I’m talking about, so hopefully one of you will. The talk will happen in my personal zoom room. Message me for the passcode.
I do not have many ideas here, so it might mostly be me talking about the category-theoretic definition of products and co-products.