You could add another entry for “something we haven’t thought of”.
I think the best way to deal with the “something we haven’t thought of” entry is to try & come up with simple ideas which knock out multiple entries on this list simultaneously. For example, 4 and 17 might both be solved if our system inspects code before running it to try & figure out whether running that code will be harmful according to its values. This is a simple solution which plausibly generalizes to problems we haven’t thought of. (Assuming the alignment problem is solved.)
In the same way simple statistical models are more likely to generalize, I think simple patches are also more likely to generalize. Having a separate solution for every item on the list seems like overfitting to the list.
Inspecting code against a harm detection predicate seems recursive. What if the code or execution necessary to perform that inspection properly itself is harmful? An AGI is almost certainly a distributed system with no meaningful notion of global state, so I doubt this can be handwaved away.
For example, a lot of distributed database vendors, like Snowflake, do not offer a pre-execution query planner. This can only be performed just-in-time as the query runs or retroactively after it has completed, as the exact structure may be dependent on co-location of data and computation that is not apparent until the data referenced by the query is examined. Moreover, getting an accurate dry-run query plan may be as expensive as executing the query itself.
By analogy, for certain kinds of complex inspection procedures you envision, executing the inspection itself thoroughly enough to be reflective of the true execution risk may be as complex and as great of a risk of being harmful according to its values.
One possibility is a sort of proof by induction, where you start with code which has been inspected by humans, then that code inspects further code, etc.
Daemons and mindcrime seem most worrisome for superhuman systems, but a human-level system is plausibly sufficient to comprehend human values (and thus do useful inspections). For daemons, I think you might even be able to formalize the idea without leaning hard on any specific utility function. The best approach might involve utility uncertainty on the part of the AI that becomes narrower with time, so you can gradually bootstrap your way to understanding human values while avoiding computational hazards according to your current guesses about human values on your way there.
People already choose not to think about particular topics on the basis of information hazards and internal suffering. Sometimes these judgements are made in an interrupt fashion partway through thinking about a topic; others are outside view judgments (“thinking about topic X always makes me feel depressed”).
Can you personally (under your own power) and confidently prove that a particular tool will only recursively-trust safe-and-reliable tools, where this recursive tree reaches far enough to trust superhuman AI?
On the other hand, you can “follow” the tree for a distance. You can prove a calculator trustworthy and use it in your following proofs, for instance. This might make it more feasible.
You could add another entry for “something we haven’t thought of”.
I think the best way to deal with the “something we haven’t thought of” entry is to try & come up with simple ideas which knock out multiple entries on this list simultaneously. For example, 4 and 17 might both be solved if our system inspects code before running it to try & figure out whether running that code will be harmful according to its values. This is a simple solution which plausibly generalizes to problems we haven’t thought of. (Assuming the alignment problem is solved.)
In the same way simple statistical models are more likely to generalize, I think simple patches are also more likely to generalize. Having a separate solution for every item on the list seems like overfitting to the list.
Inspecting code against a harm detection predicate seems recursive. What if the code or execution necessary to perform that inspection properly itself is harmful? An AGI is almost certainly a distributed system with no meaningful notion of global state, so I doubt this can be handwaved away.
For example, a lot of distributed database vendors, like Snowflake, do not offer a pre-execution query planner. This can only be performed just-in-time as the query runs or retroactively after it has completed, as the exact structure may be dependent on co-location of data and computation that is not apparent until the data referenced by the query is examined. Moreover, getting an accurate dry-run query plan may be as expensive as executing the query itself.
By analogy, for certain kinds of complex inspection procedures you envision, executing the inspection itself thoroughly enough to be reflective of the true execution risk may be as complex and as great of a risk of being harmful according to its values.
One possibility is a sort of proof by induction, where you start with code which has been inspected by humans, then that code inspects further code, etc.
Daemons and mindcrime seem most worrisome for superhuman systems, but a human-level system is plausibly sufficient to comprehend human values (and thus do useful inspections). For daemons, I think you might even be able to formalize the idea without leaning hard on any specific utility function. The best approach might involve utility uncertainty on the part of the AI that becomes narrower with time, so you can gradually bootstrap your way to understanding human values while avoiding computational hazards according to your current guesses about human values on your way there.
People already choose not to think about particular topics on the basis of information hazards and internal suffering. Sometimes these judgements are made in an interrupt fashion partway through thinking about a topic; others are outside view judgments (“thinking about topic X always makes me feel depressed”).
Can you personally (under your own power) and confidently prove that a particular tool will only recursively-trust safe-and-reliable tools, where this recursive tree reaches far enough to trust superhuman AI?
On the other hand, you can “follow” the tree for a distance. You can prove a calculator trustworthy and use it in your following proofs, for instance. This might make it more feasible.
I don’t think proofs are the right tool here. Proof by induction was meant as an analogy.