Again, this is one of those approaches that sounds good at a conference, but when you actually sit there and think about it rationally, it shows it’s flaws.
Even if you know exactly what pathway to hit, a small molecule by definition will get everywhere and gum up the works for many, many other systems in the body. It’s almost impossible not to. Sure, there’s a tiny solution space of small molecules that are safe enough to use despite this, but even then you’re going to have side effects and you still have not fixed anything. The reason the cells are giving up and failing as a person ages is that their genetic code has reached a stage that calls for this. We’re still teasing out the exact regulatory mechanisms, but the evidence for this is overwhelming.
No small molecule can fix this problem. Say one of the side effects of this end of life regulatory status is that some cells have intracellular calcium levels that are too high, and another set has them too low. Tell me a small molecule exists out of the billions of possibilities that can fix this.
DNA patching and code update is something that would basically require Drexelerian nanorobotics, subject to the issues above.
Methods to “rollback” cells to their previous developmental states, then re-differentiate them to functional components for a laboratory grown replacement organ actually fix this problem.
For some reason, most of the resources (funding and people) is not pouring into rushing Drexelerian nanorobotics or replacement organs to the prototype stage.
Again, this is one of those approaches that sounds good at a conference, but when you actually sit there and think about it rationally, it shows it’s flaws.
Even if you know exactly what pathway to hit, a small molecule by definition will get everywhere and gum up the works for many, many other systems in the body. It’s almost impossible not to. Sure, there’s a tiny solution space of small molecules that are safe enough to use despite this, but even then you’re going to have side effects and you still have not fixed anything. The reason the cells are giving up and failing as a person ages is that their genetic code has reached a stage that calls for this. We’re still teasing out the exact regulatory mechanisms, but the evidence for this is overwhelming.
No small molecule can fix this problem. Say one of the side effects of this end of life regulatory status is that some cells have intracellular calcium levels that are too high, and another set has them too low. Tell me a small molecule exists out of the billions of possibilities that can fix this.
DNA patching and code update is something that would basically require Drexelerian nanorobotics, subject to the issues above.
Methods to “rollback” cells to their previous developmental states, then re-differentiate them to functional components for a laboratory grown replacement organ actually fix this problem.
For some reason, most of the resources (funding and people) is not pouring into rushing Drexelerian nanorobotics or replacement organs to the prototype stage.