The problem with that sort of attitude is that, when the “experiment” yields so few bits and has such a tenuous connection to the thing we actually care about (as in Charlie’s concern), that’s exactly when You Are Not Measuring What You Think You Are Measuring bites real hard. Like, sure, you’ll see this system do something in the toy chess experiment, but that’s just not going to be particularly relevant to the things an actual smarter-than-human AI does in the situations Charlie’s concerned about. If anything, the experimenter is far more to likely to fool themselves into thinking their results are relevant to Charlie’s concern than they are to correctly learn anything relevant to Charlie’s concern.
That’s a reasonable point and a good cautionary note. Nevertheless, I think someone should do the experiment I described. It feels like a good start to me, even though it doesn’t solve Charlie’s concern.
I haven’t decided yet whether to write up a proper “Why Not Just...” for the post’s proposal, but here’s an overcompressed summary. (Note that I’m intentionally playing devil’s advocate here, not giving an all-things-considered reflectively-endorsed take, but the object-level part of my reflectively-endorsed take would be pretty close to this.)
Charlie’s concern isn’t the only thing it doesn’t handle. The only thing this proposal does handle is an AI extremely similar to today’s, thinking very explicitly about intentional deception, and even then the proposal only detects it (as opposed to e.g. providing a way to solve the problem, or even a way to safely iterate without selecting against detectability). And that’s an extremely narrow chunk of the X-risk probability mass—any significant variation in the AI breaks it, any significant variation in the threat model breaks it. The proposal does not generalize to anything.
Charlie’s concern is just one specific example of a way in which the proposal does not generalize. A proper “Why Not Just...” post would list a bunch more such examples.
And as with Charlie’s concern, the meta-level problem is that the proposal also probably wouldn’t get us any closer to handling those more-general situations. Sure, we could make some very toy setups (like the chess thing), and see what the shoggoth+face AI does on those very toy setups, but we get very few bits, and the connection is very tenuous to both other threat models and AIs with any significant differences from the shoggoth+face. Accounting for the inevitable failure to measure what we think we’re measuring (with probability close to 1), such experiments would not actually get us any closer to solving any of the problems which constitute the bulk of the X-risk probability mass. It’s not “a start”, because “a start” would imply that the experiment gets us closer, i.e. that the problem gets easier after doing the experiment. If you try to think about the You Are Not Measuring What You Think You Are Measuring problem as “well, we got at least some tiny epsilon of evidence, right?”, then you will shoot yourself in the foot; such reasoning is technically correct, but the correct value of epsilon is small enough that the correct update from it is not distinguishable from zero in practice.
The problem with that sort of attitude is that, when the “experiment” yields so few bits and has such a tenuous connection to the thing we actually care about (as in Charlie’s concern), that’s exactly when You Are Not Measuring What You Think You Are Measuring bites real hard. Like, sure, you’ll see this system do something in the toy chess experiment, but that’s just not going to be particularly relevant to the things an actual smarter-than-human AI does in the situations Charlie’s concerned about. If anything, the experimenter is far more to likely to fool themselves into thinking their results are relevant to Charlie’s concern than they are to correctly learn anything relevant to Charlie’s concern.
That’s a reasonable point and a good cautionary note. Nevertheless, I think someone should do the experiment I described. It feels like a good start to me, even though it doesn’t solve Charlie’s concern.
I haven’t decided yet whether to write up a proper “Why Not Just...” for the post’s proposal, but here’s an overcompressed summary. (Note that I’m intentionally playing devil’s advocate here, not giving an all-things-considered reflectively-endorsed take, but the object-level part of my reflectively-endorsed take would be pretty close to this.)
Charlie’s concern isn’t the only thing it doesn’t handle. The only thing this proposal does handle is an AI extremely similar to today’s, thinking very explicitly about intentional deception, and even then the proposal only detects it (as opposed to e.g. providing a way to solve the problem, or even a way to safely iterate without selecting against detectability). And that’s an extremely narrow chunk of the X-risk probability mass—any significant variation in the AI breaks it, any significant variation in the threat model breaks it. The proposal does not generalize to anything.
Charlie’s concern is just one specific example of a way in which the proposal does not generalize. A proper “Why Not Just...” post would list a bunch more such examples.
And as with Charlie’s concern, the meta-level problem is that the proposal also probably wouldn’t get us any closer to handling those more-general situations. Sure, we could make some very toy setups (like the chess thing), and see what the shoggoth+face AI does on those very toy setups, but we get very few bits, and the connection is very tenuous to both other threat models and AIs with any significant differences from the shoggoth+face. Accounting for the inevitable failure to measure what we think we’re measuring (with probability close to 1), such experiments would not actually get us any closer to solving any of the problems which constitute the bulk of the X-risk probability mass. It’s not “a start”, because “a start” would imply that the experiment gets us closer, i.e. that the problem gets easier after doing the experiment. If you try to think about the You Are Not Measuring What You Think You Are Measuring problem as “well, we got at least some tiny epsilon of evidence, right?”, then you will shoot yourself in the foot; such reasoning is technically correct, but the correct value of epsilon is small enough that the correct update from it is not distinguishable from zero in practice.