We are indeed in the logically omniscient setting still, so nothing would resolve that uncertainty.
The simplest concrete example I know is the Boltzman distribution for an ideal gas—not the assorted things people say about the Boltzmann distribution, but the actual math, interpreted as Bayesian probability. The model has one latent variable, the temperature T, and says that all the particle velocities are normally distributed with mean zero and variance proportional to T. Then, just following the ordinary Bayesian math: in order to estimate T from all the particle velocities, I start with some prior P[T], calculate P[T|velocities] using Bayes’ rule, and then for ~any reasonable prior I end up with a posterior distribution over T which is very tightly peaked around the average particle energy… but has nonzero spread. There’s small but nonzero uncertainty in T given all of the particle velocities. And in this simple toy gas model, those particles are the whole world, there’s nothing else to learn about which would further reduce my uncertainty in T.
We are indeed in the logically omniscient setting still, so nothing would resolve that uncertainty.
The simplest concrete example I know is the Boltzman distribution for an ideal gas—not the assorted things people say about the Boltzmann distribution, but the actual math, interpreted as Bayesian probability. The model has one latent variable, the temperature T, and says that all the particle velocities are normally distributed with mean zero and variance proportional to T. Then, just following the ordinary Bayesian math: in order to estimate T from all the particle velocities, I start with some prior P[T], calculate P[T|velocities] using Bayes’ rule, and then for ~any reasonable prior I end up with a posterior distribution over T which is very tightly peaked around the average particle energy… but has nonzero spread. There’s small but nonzero uncertainty in T given all of the particle velocities. And in this simple toy gas model, those particles are the whole world, there’s nothing else to learn about which would further reduce my uncertainty in T.