I distinctly remember having points taken off of a physics midterm because I didn’t show my work. I think I dropped the exam in the waste basket on the way out of the auditorium.
I’ve always assumed that the problem is three-fold; generating a formal proof is NP-hard, getting the right answer via shortcuts can include cheating, and the faculty’s time is limited. Professors/graders do not have the capacity to rigorously demonstrate to themselves that the steps a student has written down actually pinpoint the unique answer. Without access to the student’s mind graders are unable to determine if students cheat or not; being able to memorize and/or reproduce the exact steps of a calculation significantly decrease the likelihood of cheating. Even if graders could do one or both of the previous for a single student, they are not 30x or 100x as smart as their students, making it impractical to repeat the process for every student.
That said, I had some very good mathematics teachers in higher level courses who could force students to think, and one in particular who could encourage/demand novelty from students simply by asking them to solve problems that they hadn’t yet learned to solve. I didn’t realize the power of the latter approach until later (and at the time everyone complained about exams with a median score well under 50%), but his classes were always my favorite.
I distinctly remember having points taken off of a physics midterm because I didn’t show my work. I think I dropped the exam in the waste basket on the way out of the auditorium.
I’ve always assumed that the problem is three-fold; generating a formal proof is NP-hard, getting the right answer via shortcuts can include cheating, and the faculty’s time is limited. Professors/graders do not have the capacity to rigorously demonstrate to themselves that the steps a student has written down actually pinpoint the unique answer. Without access to the student’s mind graders are unable to determine if students cheat or not; being able to memorize and/or reproduce the exact steps of a calculation significantly decrease the likelihood of cheating. Even if graders could do one or both of the previous for a single student, they are not 30x or 100x as smart as their students, making it impractical to repeat the process for every student.
That said, I had some very good mathematics teachers in higher level courses who could force students to think, and one in particular who could encourage/demand novelty from students simply by asking them to solve problems that they hadn’t yet learned to solve. I didn’t realize the power of the latter approach until later (and at the time everyone complained about exams with a median score well under 50%), but his classes were always my favorite.