No. To get the 1⁄3 probability you have to assume that she would be just as likely to say what she says if she had 1 boy as if she had 2 (and that she wouldn’t say it if she had none). In your scenario she’s only half as likely to say what she says if she has one boy as if she has two boys, because if she only has one there’s a 50% chance it’s the one she’s just given birth to.
Although I don’t see what you’re getting at, shinoteki, I appreciate your replying. Maybe you didn’t notice; but about half an hour after I posted my comment to which you replied, I posted a comment with a different scenario, which involves no reference to birth order. (That is not to say I see that birth order bears on this.) I will certainly appreciate a reply, from you or from anyone else, to the said latter comment, whose time-stamp is 02 December 2012 06:51:25PM.
No. To get the 1⁄3 probability you have to assume that she would be just as likely to say what she says if she had 1 boy as if she had 2 (and that she wouldn’t say it if she had none). In your scenario she’s only half as likely to say what she says if she has one boy as if she has two boys, because if she only has one there’s a 50% chance it’s the one she’s just given birth to.
Although I don’t see what you’re getting at, shinoteki, I appreciate your replying. Maybe you didn’t notice; but about half an hour after I posted my comment to which you replied, I posted a comment with a different scenario, which involves no reference to birth order. (That is not to say I see that birth order bears on this.) I will certainly appreciate a reply, from you or from anyone else, to the said latter comment, whose time-stamp is 02 December 2012 06:51:25PM.