Nuclear followed the learning curve up until about 1970, when it inverted and costs started rising
This confused me because I thought that TMI in 1979 was when nuclear power really started dying off in the U.S., but Wikipedia agrees: Not a single reactor started construction in the U.S. after 1978! So I looked back on my favorite source on this, and its chart, starting in 1972, shows monotonically rising costs. Thanks for the correction. Rather than TMI happening somewhere in the middle of the coffin-construction, it really was the final nail.
Perhaps anti-nuclear activism started all the way back in 1945? I wonder how things would’ve been different if Truman wasn’t so damn eager to drop atomic bombs on civilians (edit: his diary says he would drop it on a military target, which sounds incredibly naive; but I remember hearing somewhere-or-other that he was eager to use it.)
An incident in Taipei in which an apartment was accidentally built with rebar containing radioactive cobalt-60
I’m curious what the book has to say about this, because I read that study after seeing it featured on a site called X-LNT as one of (only) four studies that ostensibly supported the radiation hormesis hypothesis (the idea that low-dose radiation is good for you). As you may know, there are far, far more than four studies on low-dose radiation exposure, so the lack of data listed on the site was a little suspicious.
But when I actually went and looked at the cited studies, I saw that only one directly supported hormesis. The conclusion of the study on the Taipei incident said “The results suggest that prolonged low dose-rate radiation exposure appeared to increase risks of developing certain cancers in specific subgroups of this population in Taiwan”. The study itself did not seem high-quality (the p-hacking is plain as day) but the point is that some people seem to have deliberately misinterpreted it. IIUC, the researchers created a simple model to predict how many cancers they expected to see in the population, and the actual number of cancers among the irradiated group was lower than their prediction, but the researchers themselves didn’t think that this was evidence of radiation being good for you.
Regardless, I’ve seen plenty of support in scientific literature for the idea that radiation is less than proportionally harmful at lower doses, although there seem to be a bunch of scientists that continue to support LNT as well. I am not sure how to tell how much scientific support each side of the debate has.
By the way, who told me about X-LNT in support of his views? None other than Robert Hargraves of Thorcon, the same company that employs Devanney. I’m glad to hear that Devanney does not promote hormesis.
My favorite 1990 book on nuclear power agrees with the general idea that small doses are less harmful:
In view of all this evidence, both UNSCEAR12 and NCRP19 estimate that risks at low dose and low dose rate are lower than those obtained from the straight line relationship by a factor of 2 to 10. For example, if 1 million mrem gives a cancer risk of 0.78, the risk from 1 mrem is not 0.78 chances in a million as stated previously, but only 1⁄2 to 1⁄10 of that (0.39 to 0.078 chances in a million). The 1980 BEIR Committee accepted the concept of reduced risk at low dose and used it in its estimates. The 1990 BEIR Committee acknowledges the effect but states that there is not enough information available to quantify it and, therefore, presents results ignoring it but with a footnote stating that these results should be reduced.
But it should be stressed that if you accept the LNT hypothesis and therefore triple the book’s risk estimates, that would only change the conclusion from “nuclear power is fantastic and extremely safe” to “nuclear power is very good and quite safe”.
The only deaths from the Fukushima disaster were caused by the unnecessary evacuation of 160,000 people, including seniors in nursing homes.
While it seems to me plausibly unjustifiable to have evacuated nursing homes or ICUs, it’s important to make a distinction between evacuation and relocation. Evacuation is a much, much smaller step than relocation. It’s a way of saying “okay, please move while we evaluate the risks here”, and after Fukushima there would have been a certain amount of short-lived iodine isotopes that you don’t want in your body. But these isotopes are basically gone after a few weeks, and iodine pills might be sufficient to protect you and allow you to move back home.
What made Fukushima really bad, I think, was the decision to do sudden and permanent relocation instead of just an evacuation, especially as they forced out elderly people who, even if they were to get a large radiation dose, probably wouldn’t have lived long enough to develop cancer from it. I don’t really understand how a thousand people can die of “stress” as the media reported (I don’t speak Japanese so how can I do more research on this?), but regardless of how their deaths happened, it seems clearly dangerous and wrong to suddenly relocate everyone, and not allow them to even visit their homes.
And then there’s the bizarre debacle of all the giant drums filled with “radioactive” water that is pretty much safe to drink. My working hypothesis is that after making a bad relocation decision that killed a lot of people, the government can’t admit it made a mistake, so it must double down. The public only knows what the media says, and if the media in Japan is like American media, it misrepresents badly. Here’s Cohen’s 1980s survey:
Here and elsewhere in communicating with the public, I try to represent the position of the great majority of radiation health scientists. [...] In 1982, I became concerned that I had no real proof that I was properly representing the scientific community. I, therefore, decided to conduct a poll by mail.
The selection of the sample to be polled was done by generally approved random sampling techniques using membership lists from Health Physics Society and Radiation Research Society, the principal professional societies for radiation health scientists. Selections were restricted to those employed by universities, since they would be less likely to be influenced by questions of employment security and more likely to be in contact with research. Procedures were such that anonymity was guaranteed.
Questionnaires were sent to 310 people, and 211 were returned, a reasonable response for a survey of this type. The questions and responses are given in Figure 1.
TABLE 1
1. In comparing the general public’s fear of radiation with actual dangers of radiation, I would say that the public’s fear is (check one):
2
grossly less than realistic (i.e., not enough fear).
9
substantially less than realistic.
8
approximately realistic.
18
slight greater than realistic.
104
substantially greater than realistic.
70
grossly greater than realistic (i.e., too much fear).
2. The impressions created by television coverage of the dangers of radiation (check one)
59
grossly exaggerate the danger.
110
substantially exaggerate the danger.
26
slightly exaggerate the danger.
5
are approximately correct.
3
slightly underplay the danger.
2
substantially underplay the danger.
1
grossly underplay the danger.
Not surprisingly, I think, the public does not know about all the efforts to make nuclear regulations more strict. In the 1970s someone listening to the media might think “nuclear power is a bit dangerous, but at least it’s affordable”, but after all the strict regulations are added, by 1990 they think “nuclear power is dangerous AND expensive!”
This is quite different than what happened with airplanes, where we got multiple TV shows about airplane accidents, which always talk at the end about how regulations and procedures were changed to ensure This Will Never Happen Again.
Even though flying is thousands of times safer than driving (per mile), people still feel it’s a little scary. Luckily, though, it’s not so scary that activists are picketing airports and demanding that the “passenger missiles” be prohibited from flying within 15 miles of a populated area.
This confused me because I thought that TMI in 1979 was when nuclear power really started dying off in the U.S., but Wikipedia agrees: Not a single reactor started construction in the U.S. after 1978! So I looked back on my favorite source on this, and its chart, starting in 1972, shows monotonically rising costs. Thanks for the correction. Rather than TMI happening somewhere in the middle of the coffin-construction, it really was the final nail.
Perhaps anti-nuclear activism started all the way back in 1945? I wonder how things would’ve been different if Truman wasn’t so damn eager to drop atomic bombs on civilians (edit: his diary says he would drop it on a military target, which sounds incredibly naive; but I remember hearing somewhere-or-other that he was eager to use it.)
I’m curious what the book has to say about this, because I read that study after seeing it featured on a site called X-LNT as one of (only) four studies that ostensibly supported the radiation hormesis hypothesis (the idea that low-dose radiation is good for you). As you may know, there are far, far more than four studies on low-dose radiation exposure, so the lack of data listed on the site was a little suspicious.
But when I actually went and looked at the cited studies, I saw that only one directly supported hormesis. The conclusion of the study on the Taipei incident said “The results suggest that prolonged low dose-rate radiation exposure appeared to increase risks of developing certain cancers in specific subgroups of this population in Taiwan”. The study itself did not seem high-quality (the p-hacking is plain as day) but the point is that some people seem to have deliberately misinterpreted it. IIUC, the researchers created a simple model to predict how many cancers they expected to see in the population, and the actual number of cancers among the irradiated group was lower than their prediction, but the researchers themselves didn’t think that this was evidence of radiation being good for you.
Regardless, I’ve seen plenty of support in scientific literature for the idea that radiation is less than proportionally harmful at lower doses, although there seem to be a bunch of scientists that continue to support LNT as well. I am not sure how to tell how much scientific support each side of the debate has.
By the way, who told me about X-LNT in support of his views? None other than Robert Hargraves of Thorcon, the same company that employs Devanney. I’m glad to hear that Devanney does not promote hormesis.
My favorite 1990 book on nuclear power agrees with the general idea that small doses are less harmful:
But it should be stressed that if you accept the LNT hypothesis and therefore triple the book’s risk estimates, that would only change the conclusion from “nuclear power is fantastic and extremely safe” to “nuclear power is very good and quite safe”.
While it seems to me plausibly unjustifiable to have evacuated nursing homes or ICUs, it’s important to make a distinction between evacuation and relocation. Evacuation is a much, much smaller step than relocation. It’s a way of saying “okay, please move while we evaluate the risks here”, and after Fukushima there would have been a certain amount of short-lived iodine isotopes that you don’t want in your body. But these isotopes are basically gone after a few weeks, and iodine pills might be sufficient to protect you and allow you to move back home.
What made Fukushima really bad, I think, was the decision to do sudden and permanent relocation instead of just an evacuation, especially as they forced out elderly people who, even if they were to get a large radiation dose, probably wouldn’t have lived long enough to develop cancer from it. I don’t really understand how a thousand people can die of “stress” as the media reported (I don’t speak Japanese so how can I do more research on this?), but regardless of how their deaths happened, it seems clearly dangerous and wrong to suddenly relocate everyone, and not allow them to even visit their homes.
And then there’s the bizarre debacle of all the giant drums filled with “radioactive” water that is pretty much safe to drink. My working hypothesis is that after making a bad relocation decision that killed a lot of people, the government can’t admit it made a mistake, so it must double down. The public only knows what the media says, and if the media in Japan is like American media, it misrepresents badly. Here’s Cohen’s 1980s survey:
Not surprisingly, I think, the public does not know about all the efforts to make nuclear regulations more strict. In the 1970s someone listening to the media might think “nuclear power is a bit dangerous, but at least it’s affordable”, but after all the strict regulations are added, by 1990 they think “nuclear power is dangerous AND expensive!”
This is quite different than what happened with airplanes, where we got multiple TV shows about airplane accidents, which always talk at the end about how regulations and procedures were changed to ensure This Will Never Happen Again.
Even though flying is thousands of times safer than driving (per mile), people still feel it’s a little scary. Luckily, though, it’s not so scary that activists are picketing airports and demanding that the “passenger missiles” be prohibited from flying within 15 miles of a populated area.