I read the rest of this discussion but did not understand the conclusion. Do you now think that the first N Godel numbers would be expected to have the same number of truths as falsehoods?
It turns out not to matter. Consider a formalism G’, identical to Godel numbering, but that reverses the sign, such that G(N) is true iff G’(N) is false. In the first N numbers in G+G’, there are an equal number of truths and falsehoods.
For every formalism that makes it easy to encode true statements, there’s an isomorphic one that does the same for false statements, and vice versa. This is why the set of statements of a given complexity can never be unbalanced.
I read the rest of this discussion but did not understand the conclusion. Do you now think that the first N Godel numbers would be expected to have the same number of truths as falsehoods?
It turns out not to matter. Consider a formalism G’, identical to Godel numbering, but that reverses the sign, such that G(N) is true iff G’(N) is false. In the first N numbers in G+G’, there are an equal number of truths and falsehoods.
For every formalism that makes it easy to encode true statements, there’s an isomorphic one that does the same for false statements, and vice versa. This is why the set of statements of a given complexity can never be unbalanced.
Gotcha, thanks.