I was imagining a Cartesian boundary, with a reward function that assigns a reward value to every possible state in the environment (so that the reward is bigger than the environment). So, embeddedness problems are simply assumed away, in which case there is only one correct generalization.
This certainly raises a lot of questions though—what form do these states take? How do I specify a reward function that takes as input a state of the world?
I agree that “actually trying” is still hard to define, though you could avoid that messiness by saying that the goal is to provide a reward such that any optimal policy for that reward would be beneficial / aligned (and then the assumption is that a policy that is “actually trying” to pursue the objective would not do as well as the optimal policy but would not be catastrophically bad).
I’m also quite scared of assuming optimality. For example, doing so would assume away sample complexity and would open up whole strategies (like arbitrarily big debate trees or debates against random opponents who happen to sometimes give good rebuttals) that I think should be off limits for algorithmic reasons regardless of the environment (and some of which are dead ends with respect to the full problem).
It feels like the low-stakes setting is also mostly assuming away embeddedness problems? I suppose it still includes e.g. cases where the AI system subtly changes the designer’s preferences over the course of training, but it excludes e.g. direct modification of the reward, taking over the training process, etc.
I feel like low-stakes makes a plausible empirical assumption under which it turns out to be possible to ignore many of the problems associated with embededness (because in fact the reward function is protected from tampering). But I’m much more scared about issues the other consequences of assuming a cartesian boundary (where e.g. I don’t even know the type signatures of the objects involved any more).
A way you could imagine this going wrong, that feels scary in the same way as the alternative problem statements, is if “are the decisions low stakes?” is a function of your training setup, so that you could unfairly exploit the magical “reward functions can’t be tampered with” assumption to do something unrealistic.
But part of why I like the low stakes assumption is that it’s about the problem you face. We’re not assuming that every reward function can’t be tampered with, just that there is some real problem in the world that has low stakes. If your algorithm introduces high stakes internally then that’s your problem and it’s not magically assumed away.
This isn’t totally fair because the utility function U in the low-stakes definition depends on your training procedure, so you could still be cheating. But I feel much, much better about it.
I think this is basically what you were saying with:
That being said, one way that low-stakes alignment is cleaner is that it uses an assumption on the _environment_ (an input to the problem) rather than an assumption on the _AI system_ (an output of the problem).
That seems like it might capture the core of why I like the low-stakes assumption. It’s what makes it so that you can’t exploit the assumption in an unfair way, and so that your solutions aren’t going to systematically push up against unrealistic parts of the assumption.
Yeah, all of that seems right to me (and I feel like I have a better understanding of why assumptions on inputs are better than assumptions on outputs, which was more like a vague intuition before). I’ve changed the opinion to:
I like the low-stakes assumption as a way of saying “let’s ignore distributional shift for now”. Probably the most salient alternative is something along the lines of “assume that the AI system is trying to optimize the true reward function”. The main way that low-stakes alignment is cleaner is that it uses an assumption on the _environment_ (an input to the problem) rather than an assumption on the _AI system_ (an output of the problem). This seems to be a lot nicer because it is harder to “unfairly” exploit a not-too-strong assumption on an input rather than on an output. See [this comment thread](https://www.alignmentforum.org/posts/TPan9sQFuPP6jgEJo/low-stakes-alignment?commentId=askebCP36Ce96ZiJa) for more discussion.
This certainly raises a lot of questions though—what form do these states take? How do I specify a reward function that takes as input a state of the world?
I’m also quite scared of assuming optimality. For example, doing so would assume away sample complexity and would open up whole strategies (like arbitrarily big debate trees or debates against random opponents who happen to sometimes give good rebuttals) that I think should be off limits for algorithmic reasons regardless of the environment (and some of which are dead ends with respect to the full problem).
I feel like low-stakes makes a plausible empirical assumption under which it turns out to be possible to ignore many of the problems associated with embededness (because in fact the reward function is protected from tampering). But I’m much more scared about issues the other consequences of assuming a cartesian boundary (where e.g. I don’t even know the type signatures of the objects involved any more).
A way you could imagine this going wrong, that feels scary in the same way as the alternative problem statements, is if “are the decisions low stakes?” is a function of your training setup, so that you could unfairly exploit the magical “reward functions can’t be tampered with” assumption to do something unrealistic.
But part of why I like the low stakes assumption is that it’s about the problem you face. We’re not assuming that every reward function can’t be tampered with, just that there is some real problem in the world that has low stakes. If your algorithm introduces high stakes internally then that’s your problem and it’s not magically assumed away.
This isn’t totally fair because the utility function U in the low-stakes definition depends on your training procedure, so you could still be cheating. But I feel much, much better about it.
I think this is basically what you were saying with:
That seems like it might capture the core of why I like the low-stakes assumption. It’s what makes it so that you can’t exploit the assumption in an unfair way, and so that your solutions aren’t going to systematically push up against unrealistic parts of the assumption.
Yeah, all of that seems right to me (and I feel like I have a better understanding of why assumptions on inputs are better than assumptions on outputs, which was more like a vague intuition before). I’ve changed the opinion to: