I’ve been reading these last posts on Science vs. Bayes and I really don’t get it. I mean, obviously bayesian reasoning supersedes falsifiability and how to analyze evidence, but there’s no conflict. Like relativity vs. newtonian mechanics, there’s thresholds that we need to cross to see the failures in Science, but there are many situations when just Science works effectively.
The New Scientist is even worse, the idea that we need to ditch falsifiability and use Bayes is idiotic, it’s like saying that binary logic should be discarded because we can use probabilities instead of zero and one. Falsifiability is a special case of Bayes, we can’t have Bayes without falsifiability (as we can’t have natural’s addition ruling out 2+2=4), the people that argue this don’t understand the extents of Bayes.
WRT multiverse IMHO we have to separate the interpretation of some theory from the theory itself. If the theory (which is testable, falsifiable, etc.) holds against the evidence and one of it’s results is the existence of a multiverse, then we have to accept the existence of the multiverse. If it isn’t one of the results, but it is one possible interpretation of how the theory “really works”, then we are in the realm of philosophy and we can spend thousands of years arguing any way without going forward. In most cases of QM theories there’s no clear separation of both, so people attach themselves to the interpretations instead of using the results. If we have two hypothesis that explain the same phenomena we have three possible choices:
they’re equal up to isomorphism (which means that doesn’t matter which one we choose, other than convenience).
one is simpler than the other (using whatever criteria of complexity we want to use).
both explain more than the phenomena.
Number 1 is a no-brainer. Number 3 is the most usual situation, where the evidence points either way and new evidence is necessary to confirm in both directions. We can use Bayes to assess the probability of each one being “the right one”, but if both theories don’t contradict each other then there’s a smaller theory inside each that falls in the case number 1. Number 2 is the most problematic because plain use of complexity assessment doesn’t guarantee that we are picking the right one. The problem lies in the evidence available: there’s no way to know if we have sufficient evidence to rule out any one. Just because a equation is simpler it doesn’t mean it’s correct, perhaps our data set is well known. Again it should be the cause that the simpler theory is isomorphic to a subset of the larger theory.
The only argument that needs to be spoken is if the multiverse is a result or an interpretation, but in the strictest sense of the word: we can’t say it’s an interpretation assuming that X and Y holds, because them it’s an interpretation of QM + X + Y. AFAIK every “interpretation” of QM extends the assumptions in a particular direction. Personally I find the multiverse interpretation cleaner, mathematically simpler and I would bet my money on it.
On your points of departure:
(1) Shows how problematic academia is. I think the academic model is a dead end, we should value rationality more than quantity of papers published, the whole politics of the thing is way too much inefficient.
(2) It won’t be enough because our culture values rationality much less than anything else. Even without bayesian reasoning plain old Science rules out the bible, you can either believe in logic or the bible. One of the best calculus professors I had was a fervent adventist. IMO our best strategy is just outsmart the irrationalists, our method is proven and yields much better results, we just need to keep compounding it to the singularity ;)
(3) You’re dead wrong (in the example). There are many other necessary experiments other than seeing an apple fall to realize special relativity. Actually a bayesian super-intelligence could get trapped in local maximum for a long time until the “right” set of experiments happened. We have a history of successes in science but there’s a long list of known failures, let alone the unknown failures.
I’ve been reading these last posts on Science vs. Bayes and I really don’t get it. I mean, obviously bayesian reasoning supersedes falsifiability and how to analyze evidence, but there’s no conflict. Like relativity vs. newtonian mechanics, there’s thresholds that we need to cross to see the failures in Science, but there are many situations when just Science works effectively.
The New Scientist is even worse, the idea that we need to ditch falsifiability and use Bayes is idiotic, it’s like saying that binary logic should be discarded because we can use probabilities instead of zero and one. Falsifiability is a special case of Bayes, we can’t have Bayes without falsifiability (as we can’t have natural’s addition ruling out 2+2=4), the people that argue this don’t understand the extents of Bayes.
WRT multiverse IMHO we have to separate the interpretation of some theory from the theory itself. If the theory (which is testable, falsifiable, etc.) holds against the evidence and one of it’s results is the existence of a multiverse, then we have to accept the existence of the multiverse. If it isn’t one of the results, but it is one possible interpretation of how the theory “really works”, then we are in the realm of philosophy and we can spend thousands of years arguing any way without going forward. In most cases of QM theories there’s no clear separation of both, so people attach themselves to the interpretations instead of using the results. If we have two hypothesis that explain the same phenomena we have three possible choices:
they’re equal up to isomorphism (which means that doesn’t matter which one we choose, other than convenience).
one is simpler than the other (using whatever criteria of complexity we want to use).
both explain more than the phenomena.
Number 1 is a no-brainer. Number 3 is the most usual situation, where the evidence points either way and new evidence is necessary to confirm in both directions. We can use Bayes to assess the probability of each one being “the right one”, but if both theories don’t contradict each other then there’s a smaller theory inside each that falls in the case number 1. Number 2 is the most problematic because plain use of complexity assessment doesn’t guarantee that we are picking the right one. The problem lies in the evidence available: there’s no way to know if we have sufficient evidence to rule out any one. Just because a equation is simpler it doesn’t mean it’s correct, perhaps our data set is well known. Again it should be the cause that the simpler theory is isomorphic to a subset of the larger theory.
The only argument that needs to be spoken is if the multiverse is a result or an interpretation, but in the strictest sense of the word: we can’t say it’s an interpretation assuming that X and Y holds, because them it’s an interpretation of QM + X + Y. AFAIK every “interpretation” of QM extends the assumptions in a particular direction. Personally I find the multiverse interpretation cleaner, mathematically simpler and I would bet my money on it.
On your points of departure: (1) Shows how problematic academia is. I think the academic model is a dead end, we should value rationality more than quantity of papers published, the whole politics of the thing is way too much inefficient. (2) It won’t be enough because our culture values rationality much less than anything else. Even without bayesian reasoning plain old Science rules out the bible, you can either believe in logic or the bible. One of the best calculus professors I had was a fervent adventist. IMO our best strategy is just outsmart the irrationalists, our method is proven and yields much better results, we just need to keep compounding it to the singularity ;) (3) You’re dead wrong (in the example). There are many other necessary experiments other than seeing an apple fall to realize special relativity. Actually a bayesian super-intelligence could get trapped in local maximum for a long time until the “right” set of experiments happened. We have a history of successes in science but there’s a long list of known failures, let alone the unknown failures.