I slightly edited that section header to make it clearer what the parenthetical “(matrix multiplications, ReLUs, etc.)” is referring to. Thanks!
I agree that it’s hard to make highly-confident categorical statements about all current and future DNN-ish architectures.
I don’t think the human planning algorithm is very much like MCTS, although you can learn to do MCTS (just like you can learn to mentally run any other algorithm—people can learn strategies about what thoughts to think, just like they can strategies about what actions to execute). I think the built-in capability is that compositional-generative-model-based processing I was talking about in this post.
Like, if I tell you “I have a banana blanket”, you have a constraint (namely, I just said that I have a banana blanket) and you spend a couple seconds searching through generative models until you find one that is maximally consistent with both that constraint and also all your prior beliefs about the world. You’re probably imagining me with a blanket that has pictures of bananas on it, or less likely with a blanket made of banana peels, or maybe you figure I’m just being silly.
So by the same token, imagine you want to squeeze a book into a mostly-full bag. You have a constraint (the book winds up in the bag), and you spend a couple seconds searching through generative models until you find one that’s maximally consistent with both that constraint and also all your prior beliefs and demands about the world. You imagine a plausible way to slide the book in without ripping the bag or squishing the other content, and flesh that out into a very specific action plan, and then you pick the book up and do it.
When we need a multi-step plan, too much to search for in one go, we start needing to also rely on other built-in capabilities like chunking stuff together into single units, analogical reasoning (which is really just a special case of compositional-generative-model-based processing), and RL (as mentioned above, RL plays a role in learning to use metacognitive problem-solving strategies). Maybe other things too.
I don’t think causality per se is a built-in feature, but I think it comes out pretty quickly from the innate ability to learn (and chunk) time-sequences, and then incorporate those learned sequences into the compositional-generative-model-based processing framework. Like, “I swing my foot and then kick the ball and then the ball is flying away” is a memorized temporal sequence, but it’s also awfully close to a causal belief that “kicking the ball causes it to fly away”. (...at least in conjunction with a second memorized temporal sequence where I don’t kick the ball and it just stays put.) (See also counterfactuals.)
I’m less confident about any of this than I sound :)
I slightly edited that section header to make it clearer what the parenthetical “(matrix multiplications, ReLUs, etc.)” is referring to. Thanks!
I agree that it’s hard to make highly-confident categorical statements about all current and future DNN-ish architectures.
I don’t think the human planning algorithm is very much like MCTS, although you can learn to do MCTS (just like you can learn to mentally run any other algorithm—people can learn strategies about what thoughts to think, just like they can strategies about what actions to execute). I think the built-in capability is that compositional-generative-model-based processing I was talking about in this post.
Like, if I tell you “I have a banana blanket”, you have a constraint (namely, I just said that I have a banana blanket) and you spend a couple seconds searching through generative models until you find one that is maximally consistent with both that constraint and also all your prior beliefs about the world. You’re probably imagining me with a blanket that has pictures of bananas on it, or less likely with a blanket made of banana peels, or maybe you figure I’m just being silly.
So by the same token, imagine you want to squeeze a book into a mostly-full bag. You have a constraint (the book winds up in the bag), and you spend a couple seconds searching through generative models until you find one that’s maximally consistent with both that constraint and also all your prior beliefs and demands about the world. You imagine a plausible way to slide the book in without ripping the bag or squishing the other content, and flesh that out into a very specific action plan, and then you pick the book up and do it.
When we need a multi-step plan, too much to search for in one go, we start needing to also rely on other built-in capabilities like chunking stuff together into single units, analogical reasoning (which is really just a special case of compositional-generative-model-based processing), and RL (as mentioned above, RL plays a role in learning to use metacognitive problem-solving strategies). Maybe other things too.
I don’t think causality per se is a built-in feature, but I think it comes out pretty quickly from the innate ability to learn (and chunk) time-sequences, and then incorporate those learned sequences into the compositional-generative-model-based processing framework. Like, “I swing my foot and then kick the ball and then the ball is flying away” is a memorized temporal sequence, but it’s also awfully close to a causal belief that “kicking the ball causes it to fly away”. (...at least in conjunction with a second memorized temporal sequence where I don’t kick the ball and it just stays put.) (See also counterfactuals.)
I’m less confident about any of this than I sound :)