When you consider the pool of potential patients (over a given century) is in the billions, a few million per location does not necessarily constitute putting all your eggs in one basket. And the process of making it mainstream enough for this to happen could have a huge positive impact the sanity waterline.
I’m thinking about actually proposing this to cryo-companies, so we have to deal with the real world, where there are tens of patients per decade, not billions.
With only a few dozen patients, I don’t think you will see appreciable economies of scale. The whole idea seems to me reliant on at least a few thousand patients becoming available within a short period of time (or prepaying).
My calculations indicate that you could have a system that lasted for 200 years for just $500,000, though with a scale of perhaps 100 units being built this would go down by a factor of 2-3 and the reliability would go up.
At r=2.9 meters, the size is about in the 10,000 neuro patient range. (V~=102m^3, patients per cubic meter is about 125). You might only fill it part way though if you are aiming for maximum duration, as the less cryogen is displaced the longer the system stays cold. Even so, this could probably hold every cryonicist currently in existence.
Though it’s reliability, not just cost that matters. If there were fewer patients per grave, (e.g. 10 per grave), then the reliability goes up (see my previous comments to this effect)
Still, filling it to 50% of its volume would only bring down refill time by 50%. And you only can fill to a certain percentage with patients as they are irregularly shaped. I suppose the real question is whether cost or hands-off reliability is the biggest concern.
I think that with 10 patients, such a system would cost $100k each, which is pretty good. With many such systems scattered around the remote, cold parts of the world, the probability of any fraction of systems being vandalized goes down, and the information gained about how such systems fail comes in quickly as a few of them fail (e.g. vacuum leaks).
When you consider the pool of potential patients (over a given century) is in the billions, a few million per location does not necessarily constitute putting all your eggs in one basket. And the process of making it mainstream enough for this to happen could have a huge positive impact the sanity waterline.
I’m thinking about actually proposing this to cryo-companies, so we have to deal with the real world, where there are tens of patients per decade, not billions.
With only a few dozen patients, I don’t think you will see appreciable economies of scale. The whole idea seems to me reliant on at least a few thousand patients becoming available within a short period of time (or prepaying).
My calculations indicate that you could have a system that lasted for 200 years for just $500,000, though with a scale of perhaps 100 units being built this would go down by a factor of 2-3 and the reliability would go up.
At r=2.9 meters, the size is about in the 10,000 neuro patient range. (V~=102m^3, patients per cubic meter is about 125). You might only fill it part way though if you are aiming for maximum duration, as the less cryogen is displaced the longer the system stays cold. Even so, this could probably hold every cryonicist currently in existence.
Though it’s reliability, not just cost that matters. If there were fewer patients per grave, (e.g. 10 per grave), then the reliability goes up (see my previous comments to this effect)
Still, filling it to 50% of its volume would only bring down refill time by 50%. And you only can fill to a certain percentage with patients as they are irregularly shaped. I suppose the real question is whether cost or hands-off reliability is the biggest concern.
I think that with 10 patients, such a system would cost $100k each, which is pretty good. With many such systems scattered around the remote, cold parts of the world, the probability of any fraction of systems being vandalized goes down, and the information gained about how such systems fail comes in quickly as a few of them fail (e.g. vacuum leaks).
Not graves!