Biologically, I think the evolution of body-plan modularity might be backwards from your general argument for it—the biological goal seems to be to make big (but not automatically bad) changes from small mutations (e.g. entire extra body segments), not to “hide” DOF inside modules to allow for smoother changes per parameter.
In fact, this strikes me as resembling abstraction, so this might be right in your wheelhouse :P Biological modularity seems to specifically select for those modules with simple interfaces that can be cut-and-pasted with the maximal chance of success.
My knowledge of the precambrian is bad, so I suspect that biologists have written much cleverer things about this already.
(EDIT: Actually, you could think of this as a reverse sort of robustness. Rather than asking for a genome where small changes don’t impact your fitness much, the HOX genes seem to be more about being able to respond to new environments [or non-equilibrium races for adaptation] with small changes.
If we have environment E, fitness F, and genome G, then (very loosely) this looks like low dG/dE, not low d^2F/dG^2. )
Biologically, I think the evolution of body-plan modularity might be backwards from your general argument for it—the biological goal seems to be to make big (but not automatically bad) changes from small mutations (e.g. entire extra body segments), not to “hide” DOF inside modules to allow for smoother changes per parameter.
In fact, this strikes me as resembling abstraction, so this might be right in your wheelhouse :P Biological modularity seems to specifically select for those modules with simple interfaces that can be cut-and-pasted with the maximal chance of success.
My knowledge of the precambrian is bad, so I suspect that biologists have written much cleverer things about this already.
(EDIT: Actually, you could think of this as a reverse sort of robustness. Rather than asking for a genome where small changes don’t impact your fitness much, the HOX genes seem to be more about being able to respond to new environments [or non-equilibrium races for adaptation] with small changes.
If we have environment E, fitness F, and genome G, then (very loosely) this looks like low dG/dE, not low d^2F/dG^2. )