Again, interesting work, hope this didn’t come off too combative!
Not at all, you are correctly critiquing the downsides of a trade-off which we consciously made.
There was a moment during writing when David suggested we soften the title/opening to avoid alienating classical semantics researchers. I replied that I expected useful work on the project to mostly come, not from people with a background in classical semantics, but from people who had bounced off of classical semantics because they intuited that it “wasn’t addressing the real problem”. Those are the people who’ve already felt, on a gut level, a need for the sort of models the post outlines. (Also, as one person who reviewed the post put it: “Although semantics would suggest that this post would be interesting to logicians, linguists and their brethren [...] I think they would not find it interesting because it is a seemingly nonsymbolic attempt to approach semantics. Symbolical methods are their bread and butter, without them they would be lost.”)
To that end, the title and opening are optimized to be a costly signal to those people who bounced off classical semantics, signalling that they might be interested in this post even though they’ve been unsatisfied before with lots of work on semantics. The cost of that costly signal is alienating classical semantics researchers. And having made that trade-off upfront, naturally we didn’t spend much time trying to express this project in terms more familiar to people in the field.
If we were writing a version more optimized for people already in the field, I might have started by saying that the core problem is the use of model theory as the primary foundation for semantics (i.e. Montague semantics and its descendants as the central example). That foundation explicitly ignores the real world, and is therefore only capable of answering questions which don’t require any notion of the real world—e.g. Montague nominally focused on how truth values interact with syntax. Obviously that is a rather narrow and impoverished subset of the interesting questions about natural language semantics, and I would have then gone through some standard alternate approaches (and critiques) which do allow a role for the real world, before introducing our framework.
Thanks for the response. Personally, I think your opening sentence as written is much, much too broad to do the job you want it to do. For example, I would consider “natural language semantics as studied in linguistics” to include computational approaches, including some Bayesian approaches which are similar to your own. If I were a computational linguist reading your opening sentence, I would be pretty put off (presumably, these are the kind of people you are hoping not to put off). Perhaps including a qualification that it is classical semantics you are talking about (with optional explanatory footnote) would be a happy medium.
I would make a similar critique of basically-all the computational approaches I’ve seen to date. They generally try to back out “semantics” from a text corpus, which means their “semantics” grounds out in relations between words; neither the real world nor mental content make any appearance. They may use Bayes’ rule and latents like this post does, but such models can’t address the kinds of questions this post is asking at all.
(I suppose my complaints are more about structuralism than about model-theoretic foundations per se. Internally I’d been thinking of it more as an issue with model-theoretic foundations, since model theory is the main route through which structuralism has anything at all to say about the stuff which I would consider semantics.)
Of course you might have in mind some body of work on computational linguistics/semantics with which I am unfamiliar, in which case I would be quite grateful for my ignorance to be corrected!
I see. I’m afraid I don’t have much great literature to recommend on computational semantics (though Josh Tenenbaum’s PhD dissertation seems relevant). I still wonder whether, even if you disagree with the approaches you have seen in that domain, those might be the kind of people well-placed to help with your project. But that’s your call of course.
Depending on your goals with this project, you might get something out of reading work by relevance theorists like Sperber, Wilson, and Carston (if you haven’t before). I find Carston’s reasoning about how variousaspects of language works quite compelling. You won’t find much to help solve your mathematical problems there, but you might find considerations that help you disambiguate between possible things you want your model of semantics to do (e.g., do you really care about semantics, per se, or rather concept formation?).
Not at all, you are correctly critiquing the downsides of a trade-off which we consciously made.
There was a moment during writing when David suggested we soften the title/opening to avoid alienating classical semantics researchers. I replied that I expected useful work on the project to mostly come, not from people with a background in classical semantics, but from people who had bounced off of classical semantics because they intuited that it “wasn’t addressing the real problem”. Those are the people who’ve already felt, on a gut level, a need for the sort of models the post outlines. (Also, as one person who reviewed the post put it: “Although semantics would suggest that this post would be interesting to logicians, linguists and their brethren [...] I think they would not find it interesting because it is a seemingly nonsymbolic attempt to approach semantics. Symbolical methods are their bread and butter, without them they would be lost.”)
To that end, the title and opening are optimized to be a costly signal to those people who bounced off classical semantics, signalling that they might be interested in this post even though they’ve been unsatisfied before with lots of work on semantics. The cost of that costly signal is alienating classical semantics researchers. And having made that trade-off upfront, naturally we didn’t spend much time trying to express this project in terms more familiar to people in the field.
If we were writing a version more optimized for people already in the field, I might have started by saying that the core problem is the use of model theory as the primary foundation for semantics (i.e. Montague semantics and its descendants as the central example). That foundation explicitly ignores the real world, and is therefore only capable of answering questions which don’t require any notion of the real world—e.g. Montague nominally focused on how truth values interact with syntax. Obviously that is a rather narrow and impoverished subset of the interesting questions about natural language semantics, and I would have then gone through some standard alternate approaches (and critiques) which do allow a role for the real world, before introducing our framework.
Thanks for the response. Personally, I think your opening sentence as written is much, much too broad to do the job you want it to do. For example, I would consider “natural language semantics as studied in linguistics” to include computational approaches, including some Bayesian approaches which are similar to your own. If I were a computational linguist reading your opening sentence, I would be pretty put off (presumably, these are the kind of people you are hoping not to put off). Perhaps including a qualification that it is classical semantics you are talking about (with optional explanatory footnote) would be a happy medium.
I would make a similar critique of basically-all the computational approaches I’ve seen to date. They generally try to back out “semantics” from a text corpus, which means their “semantics” grounds out in relations between words; neither the real world nor mental content make any appearance. They may use Bayes’ rule and latents like this post does, but such models can’t address the kinds of questions this post is asking at all.
(I suppose my complaints are more about structuralism than about model-theoretic foundations per se. Internally I’d been thinking of it more as an issue with model-theoretic foundations, since model theory is the main route through which structuralism has anything at all to say about the stuff which I would consider semantics.)
Of course you might have in mind some body of work on computational linguistics/semantics with which I am unfamiliar, in which case I would be quite grateful for my ignorance to be corrected!
I see. I’m afraid I don’t have much great literature to recommend on computational semantics (though Josh Tenenbaum’s PhD dissertation seems relevant). I still wonder whether, even if you disagree with the approaches you have seen in that domain, those might be the kind of people well-placed to help with your project. But that’s your call of course.
Depending on your goals with this project, you might get something out of reading work by relevance theorists like Sperber, Wilson, and Carston (if you haven’t before). I find Carston’s reasoning about how various aspects of language works quite compelling. You won’t find much to help solve your mathematical problems there, but you might find considerations that help you disambiguate between possible things you want your model of semantics to do (e.g., do you really care about semantics, per se, or rather concept formation?).