It is not the case if the money can be utilized in a manner with long term impact.
OK, I was using $ here as a proxy for utils, but technically you’re right: the bet should be expressed in utils (as for the general definition of a chance that I gave in my comment). Or if you don’t know how to bet in utils, use another proxy which is a consumptive good and can’t be invested (e.g. chocolate bars or vouchers for a cinema trip this week). A final loop-hole is the time discounting: the real versions of you mostly live earlier than the sim versions of you, so perhaps a chocolate bar for the real “you” is worth many chocolate bars for sim “you”s? However we covered that earlier in the thread as well: my understanding is that your effective discount rate is not high enough to outweigh the huge numbers of sims.
An unambiguous recipe cannot exist since it would have to give precise answers to ambiguous questions such as: if there are two identical simulations of you running on two computers, should they be counted as two copies or one?
Well this is your utility function, so you tell me! Imagine a hacker is able to get into the simulations and replace pleasant experiences by horrible torture. Does your utility function care twice as much if he hacks both simulations versus hacking just one of them? (My guess is that it does). And this style of reasoning may cover limit cases like a simulation running on a wafer which is then cut in two (think about whether the sims are independently hackable, and how much you care.)
An unambiguous recipe cannot exist since it would have to give precise answers to ambiguous questions such as: if there are two identical simulations of you running on two computers, should they be counted as two copies or one?
Well this is your utility function, so you tell me! Imagine a hacker is able to get into the simulations and replace pleasant experiences by horrible torture. Does your utility function care twice as much if he hacks both simulations versus hacking just one of them? (My guess is that it does).
It wouldn’t be exactly twice but you’re more or less right. However, it has no direct relation to probability. To see this, imagine you’re a paperclip maximizer. In this case you don’t care about torture or anything of the sort: you only care about paperclips. So your utility function specifies a way of counting paperclips but no way of counting copies of you.
From another angle, imagine your two simulations are offered a bet. How should they count themselves? Obviously it depends on the rules of the bet: whether the payoff is handed out once or twice. Therefore, the counting is ambiguous.
What you’re trying to do is writing the utility function as a convex linear combination of utility functions associated with different copies of you. Once you accomplish that, the coefficients of the combination can be interpreted as probabilities. However, there is no such canonical decomposition.
OK, I was using $ here as a proxy for utils, but technically you’re right: the bet should be expressed in utils (as for the general definition of a chance that I gave in my comment). Or if you don’t know how to bet in utils, use another proxy which is a consumptive good and can’t be invested (e.g. chocolate bars or vouchers for a cinema trip this week). A final loop-hole is the time discounting: the real versions of you mostly live earlier than the sim versions of you, so perhaps a chocolate bar for the real “you” is worth many chocolate bars for sim “you”s? However we covered that earlier in the thread as well: my understanding is that your effective discount rate is not high enough to outweigh the huge numbers of sims.
Well this is your utility function, so you tell me! Imagine a hacker is able to get into the simulations and replace pleasant experiences by horrible torture. Does your utility function care twice as much if he hacks both simulations versus hacking just one of them? (My guess is that it does). And this style of reasoning may cover limit cases like a simulation running on a wafer which is then cut in two (think about whether the sims are independently hackable, and how much you care.)
It wouldn’t be exactly twice but you’re more or less right. However, it has no direct relation to probability. To see this, imagine you’re a paperclip maximizer. In this case you don’t care about torture or anything of the sort: you only care about paperclips. So your utility function specifies a way of counting paperclips but no way of counting copies of you.
From another angle, imagine your two simulations are offered a bet. How should they count themselves? Obviously it depends on the rules of the bet: whether the payoff is handed out once or twice. Therefore, the counting is ambiguous.
What you’re trying to do is writing the utility function as a convex linear combination of utility functions associated with different copies of you. Once you accomplish that, the coefficients of the combination can be interpreted as probabilities. However, there is no such canonical decomposition.