But the point is that you can’t just say “you can’t build a device that solves the halting problem” because, for any fixed finite set of Turing machines, you can trivially build such a device, you just can’t recognize it once you’ve built it...
Yes, but the distinction between the two isn’t captured by computability theory (unless you are allowed to pose infinitely many problems). Also, if the universe is spatially infinite, it can solve the halting problem in a deeply silly way, namely there could be an infinite string of bits somewhere, each a fixed distance from the next, that just hardcodes the solution to the halting problem.
This is obviously unsatisfying, but part of the reason it’s unsatisfying is that even if such an infinite string of bits existed (and even if we somehow verified that it was trustworthy), it would constitute a horribly inefficient algorithm for solving the halting problem: moving at constant speed, it would take time exponential in the length of the code for a Turing machine to go to the place in the universe where the bit determining whether that Turing machine halts is stored. But this is a complexity consideration, not a computability consideration.
unless you are allowed to pose infinitely many problems
Or one selected at random from an infinite class of problems.
Also, if the universe is spatially infinite, it can solve the halting problem in a deeply silly way, namely there could be an infinite string of bits somewhere, each a fixed distance from the next, that just hardcodes the solution to the halting problem.
That’s why both computability theory and complexity theory require algorithms to have finite sized sourcecode.
solving is not the same as providing the answer
Yes, but the distinction between the two isn’t captured by computability theory (unless you are allowed to pose infinitely many problems). Also, if the universe is spatially infinite, it can solve the halting problem in a deeply silly way, namely there could be an infinite string of bits somewhere, each a fixed distance from the next, that just hardcodes the solution to the halting problem.
This is obviously unsatisfying, but part of the reason it’s unsatisfying is that even if such an infinite string of bits existed (and even if we somehow verified that it was trustworthy), it would constitute a horribly inefficient algorithm for solving the halting problem: moving at constant speed, it would take time exponential in the length of the code for a Turing machine to go to the place in the universe where the bit determining whether that Turing machine halts is stored. But this is a complexity consideration, not a computability consideration.
Or one selected at random from an infinite class of problems.
That’s why both computability theory and complexity theory require algorithms to have finite sized sourcecode.