Right. In general, spawning time travel is paradox-free, that’s why I am not clear on why “the impossibility of Time-Turners given MWI”. Presumably if you already spawn uncountable numbers of worlds all the time, it’s not a big deal to spawn one more.
You can certainly postulate a physics that’s both MWI and contains something sorta like Time-Turners except without the Novikov property. The problem with that isn’t paradox, it just doesn’t reproduce the fictional experimental evidence we’re trying to explain. What’s impossible is MWI with something exactly like Time-Turners including Novikov.
What’s impossible is MWI with something exactly like Time-Turners including Novikov.
I am ignorant on these topics, but isn’t Novikov consistency predicated on QM? In that the “actual” paradox-free world is produced by a sum-over-histories? What about MWI prevents this?
Novikov consistency is synonymous with Stable Time Loop, where all time travelers observe the same events as they remember from their subjectively-previous iteration. This is as opposed to MWI-based time travel, where the no paradox rule merely requires that the overall distribution of time travelers arriving at t0 is equal to the overall distribution of people departing in time machines at t1.
Yes, Novikov talked about QM. He used the sum-over-histories formulation, restricted to the subset of histories that each singlehandedly form a classical stable time loop. This allows some form of multiple worlds, but not standard MWI: This forbids any Everett branching from happening during the time loop (if any event that affects the time traveler’s state branched two ways, one of them would be inconsistent with your memory), and instead branches only on the question of what comes out of the time machine.
Hmm. So if, say, I committed quantum suicide, then traveled back, I wouldn’t have any special information about the result of the RNG. Most of me would still end up in worlds where I died; God’s dice get re-rolled every time round. No extra math to prevent paradoxes; although it still looks like Novikov for non-quantum events.
Whereas under standard Novikov Consistency, I’m restricted to the worlds where I survived, because otherwise I came from nowhere. In fact, the universe is restricted to those worlds; there are only worlds where I survived and came back and worlds where I died and didn’t. Thus, no Everett branching. Right.
The degree to which the difference would be observable depends on the amount of quantum variance in your life, I guess.
Right. In general, spawning time travel is paradox-free, that’s why I am not clear on why “the impossibility of Time-Turners given MWI”. Presumably if you already spawn uncountable numbers of worlds all the time, it’s not a big deal to spawn one more.
You can certainly postulate a physics that’s both MWI and contains something sorta like Time-Turners except without the Novikov property. The problem with that isn’t paradox, it just doesn’t reproduce the fictional experimental evidence we’re trying to explain. What’s impossible is MWI with something exactly like Time-Turners including Novikov.
(Nods.)
I am ignorant on these topics, but isn’t Novikov consistency predicated on QM? In that the “actual” paradox-free world is produced by a sum-over-histories? What about MWI prevents this?
Sorry if this is an incredibly stupid question.
Novikov consistency is synonymous with Stable Time Loop, where all time travelers observe the same events as they remember from their subjectively-previous iteration. This is as opposed to MWI-based time travel, where the no paradox rule merely requires that the overall distribution of time travelers arriving at t0 is equal to the overall distribution of people departing in time machines at t1.
Yes, Novikov talked about QM. He used the sum-over-histories formulation, restricted to the subset of histories that each singlehandedly form a classical stable time loop. This allows some form of multiple worlds, but not standard MWI: This forbids any Everett branching from happening during the time loop (if any event that affects the time traveler’s state branched two ways, one of them would be inconsistent with your memory), and instead branches only on the question of what comes out of the time machine.
Hmm. So if, say, I committed quantum suicide, then traveled back, I wouldn’t have any special information about the result of the RNG. Most of me would still end up in worlds where I died; God’s dice get re-rolled every time round. No extra math to prevent paradoxes; although it still looks like Novikov for non-quantum events.
Whereas under standard Novikov Consistency, I’m restricted to the worlds where I survived, because otherwise I came from nowhere. In fact, the universe is restricted to those worlds; there are only worlds where I survived and came back and worlds where I died and didn’t. Thus, no Everett branching. Right.
The degree to which the difference would be observable depends on the amount of quantum variance in your life, I guess.