Hmm. Usually you can get a strong indicator of the probability of future hazards of a given size by using frequentist statistics, e.g. by finding a statistical distribution that seems to constitute a good, simple, and logically reasonable (matching the causual structure of the underlying phenomenon). You can, for instance, estimate as I do that the distribution of historical flu risks in particular or epidemic risks in general is heavily weighted towards a few large events, and that the probabilities of events many times larger than the largest historical events can be calculated with useful precision. Much more controvercially, I see the distribution of technological innovations as a function of complexity as evidence that China and India are not good candidates for developing molecular nanotech.
OTOH, the flooding example with dams gives a counter-example where the useful data from which the distribution could be inferred has been removed.
Hmm. Usually you can get a strong indicator of the probability of future hazards of a given size by using frequentist statistics, e.g. by finding a statistical distribution that seems to constitute a good, simple, and logically reasonable (matching the causual structure of the underlying phenomenon). You can, for instance, estimate as I do that the distribution of historical flu risks in particular or epidemic risks in general is heavily weighted towards a few large events, and that the probabilities of events many times larger than the largest historical events can be calculated with useful precision. Much more controvercially, I see the distribution of technological innovations as a function of complexity as evidence that China and India are not good candidates for developing molecular nanotech. OTOH, the flooding example with dams gives a counter-example where the useful data from which the distribution could be inferred has been removed.