You’re right that most de novo mutations are harmful, but I don’t think this strategy is necessarily optimal. There’s no guarantee that rare alleles are harmful.
In this case, look at the data and try to see if A or B is statistically correlated with a desirable trait
This is more or less what I think the correct approach is, but you’re glossing over a lot of detail. There are big questions around HOW to do this, to what degree desirable traits are heritable, as well as tradeoffs inherent in the human genome where the answer as to which variant is the “better” cannot be given an unqualified answer.
I am not saying the algorithm is optimal. But it’s safe. Suppose you find a rare allele that your protein folding model predicts improves function. Why didn’t nature pick it? There may be a long term problem you can’t model, while picking the majority allele is a less risky choice.
Basically, nature only cares about what works over a reproductive lifetime. But nature has information you won’t have in any feasible computer model as it is sampling from actual lives.
It may be safe from an individual perspective, but if you always pick the more common allele, you are converging towards the modal genome, which would be a world where everyone is a clone of everyone else.
Genetic diversity is valuable both as a hedge against disease and because it lends itself to specialization, which is an important part of the modern economy.
You’re right that most de novo mutations are harmful, but I don’t think this strategy is necessarily optimal. There’s no guarantee that rare alleles are harmful.
This is more or less what I think the correct approach is, but you’re glossing over a lot of detail. There are big questions around HOW to do this, to what degree desirable traits are heritable, as well as tradeoffs inherent in the human genome where the answer as to which variant is the “better” cannot be given an unqualified answer.
I am not saying the algorithm is optimal. But it’s safe. Suppose you find a rare allele that your protein folding model predicts improves function. Why didn’t nature pick it? There may be a long term problem you can’t model, while picking the majority allele is a less risky choice.
Basically, nature only cares about what works over a reproductive lifetime. But nature has information you won’t have in any feasible computer model as it is sampling from actual lives.
It may be safe from an individual perspective, but if you always pick the more common allele, you are converging towards the modal genome, which would be a world where everyone is a clone of everyone else.
Genetic diversity is valuable both as a hedge against disease and because it lends itself to specialization, which is an important part of the modern economy.