To learn gravity, you need additional evidence or context; to learn that the world is 3D, you need to see movement. To understand that movement, you have to understand how light moves, etc. etc.
for the 3d part: either the object of observation needs to move, or the observer needs to move: these are equivalent statements due to symmetry. consider two 2D images taken simultaneously from different points of observation: this provides the same information relevant here as were there to be but 2 images of a moving object from a stationary observer at slightly different moments in time.
in fact then, you don’t need to see movement in order to learn that the world is 3D. making movement a requirement to discover the dimensionality of a space mandates the additional dimension of time: how then could we discover the 4 dimensional space-time without access to some 5th dimensional analog of time? it’s an infinite regress.
similarly, you don’t need to understand the movement of light. certainly, we didn’t for a very long time. you just need to understand the projection from object to image. that’s where the bulk of these axiomatic properties of worldly knowledge reside (assumptions about physics being regular, or whatever else you need so that you can leverage things like induction in your learning).
My objection applied at a different level of reasoning. I would argue that anyone who isn’t blind understands light at the level I’m talking about. You understand that the colors you see are objects because light is bouncing off them and you know how to interpret that. If you think about it, starting from zero I’m not sure that you would recognize shapes in pictures as objects.
for the 3d part: either the object of observation needs to move, or the observer needs to move: these are equivalent statements due to symmetry. consider two 2D images taken simultaneously from different points of observation: this provides the same information relevant here as were there to be but 2 images of a moving object from a stationary observer at slightly different moments in time.
in fact then, you don’t need to see movement in order to learn that the world is 3D. making movement a requirement to discover the dimensionality of a space mandates the additional dimension of time: how then could we discover the 4 dimensional space-time without access to some 5th dimensional analog of time? it’s an infinite regress.
similarly, you don’t need to understand the movement of light. certainly, we didn’t for a very long time. you just need to understand the projection from object to image. that’s where the bulk of these axiomatic properties of worldly knowledge reside (assumptions about physics being regular, or whatever else you need so that you can leverage things like induction in your learning).
My objection applied at a different level of reasoning. I would argue that anyone who isn’t blind understands light at the level I’m talking about. You understand that the colors you see are objects because light is bouncing off them and you know how to interpret that. If you think about it, starting from zero I’m not sure that you would recognize shapes in pictures as objects.