Everything Wiseman is describing is happening at the level of the gene, not the population.
Imagine there is a gene for breeding rate - different variants of the gene give rise to different breeding rates (1, 2, …. offspring per year, let’s say). A fox that has a high-rate allele of the gene will spend more energy on breeding than on caring for existing offspring, while the reverse is true with a fox that has a low-rate allele.
Given the natural fluctuations of food availability over the long term, there is going to be an optimal range of breeding rates. Genes that specify too high a rate will find themselves in bodies that spend too much time breeding to care for their offspring sufficiently, and such genes will not get passed on as frequently. Genes that specify too low a rate will be outcompeted. Caledonian is correct; it’s like investing. But the investment pays off directly to the gene involved, so the fact that the vehicles and populations also benefit is an incidental.
To get group selection out of this scenario, you would have to have one fox group with a lower-than-optimal breeding rate, which let the rabbit population expand, which lessened the chance of a crash in food supply that would wipe out the population. Then that fox group would survive, and the neighboring groups would perish. But there is no way to enforce this pact of lower-than-optimal breeding rates in the first place.
Everything Wiseman is describing is happening at the level of the gene, not the population.
Imagine there is a gene for breeding rate - different variants of the gene give rise to different breeding rates (1, 2, …. offspring per year, let’s say). A fox that has a high-rate allele of the gene will spend more energy on breeding than on caring for existing offspring, while the reverse is true with a fox that has a low-rate allele.
Given the natural fluctuations of food availability over the long term, there is going to be an optimal range of breeding rates. Genes that specify too high a rate will find themselves in bodies that spend too much time breeding to care for their offspring sufficiently, and such genes will not get passed on as frequently. Genes that specify too low a rate will be outcompeted. Caledonian is correct; it’s like investing. But the investment pays off directly to the gene involved, so the fact that the vehicles and populations also benefit is an incidental.
To get group selection out of this scenario, you would have to have one fox group with a lower-than-optimal breeding rate, which let the rabbit population expand, which lessened the chance of a crash in food supply that would wipe out the population. Then that fox group would survive, and the neighboring groups would perish. But there is no way to enforce this pact of lower-than-optimal breeding rates in the first place.