Temperature_kineticenergy is probably more relevant in most situations.
That’s difficult to say. If you build a heat pump, you deal with entropy. If you radiate waste heat, you deal with kinetic energy. If you want to know how much waste heat you’re going to have, you deal with entropy. If you significantly change the temperature of something with a heat pump, then you have to deal with both for a large variety of temperatures.
Calling them Temperature_kineticenergy and Temperature_entropy is somewhat misleading, since both involve kinetic energy. Temperature_kineticenergy is average kinetic energy, and Temperature_entropy is the change in kinetic energy necessary to cause a marginal increase in entropy.
Also, if you escape your underscores with backslashes, you won’t get the italics.
That’s difficult to say. If you build a heat pump, you deal with entropy. If you radiate waste heat, you deal with kinetic energy. If you want to know how much waste heat you’re going to have, you deal with entropy. If you significantly change the temperature of something with a heat pump, then you have to deal with both for a large variety of temperatures.
Calling them Temperature_kineticenergy and Temperature_entropy is somewhat misleading, since both involve kinetic energy. Temperature_kineticenergy is average kinetic energy, and Temperature_entropy is the change in kinetic energy necessary to cause a marginal increase in entropy.
Also, if you escape your underscores with backslashes, you won’t get the italics.