Relativity and QM contradict but we don’t know which is mistaken or why. Either one, individually, could be true in its own right.
The situation (our current understanding which has value) looks nothing like we’ll end up keeping one and rejecting the other.
I don’t see how these two statements can be consistent. If either one, individually, could be true in its own right, then why wouldn’t we won’t end up keeping one? If they contradict, then why wouldn’t we reject the other?
As far as partly right theories that have value: if we know quantum theory is not completely right, then we’ve ruled out the hypothesis ‘quantum theory’ and are now dealing with the hypothesis space of theories that share some parts with quantum theory.
T in this case is not atomic; it is itself a conjunction of a lot of statements. So I agree that I theory known to be inaccurate in some cases can be useful, in that it may contain some true components as well as some untrue ones. But this is rather different than how we treated it when we thought it could be true in its own right.
In general, I agree that there are certain ideas in science that aren’t propositions in Bayesian sense, and that treating them as if they were is a serious mistake. I don’t think that this means that there’s something wrong with the probability probability calculus, however.
I don’t see how these two statements can be consistent. If either one, individually, could be true in its own right, then why wouldn’t we won’t end up keeping one? If they contradict, then why wouldn’t we reject the other?
i expect we’ll keep parts of both.
As far as partly right theories that have value: if we know quantum theory is not completely right, then we’ve ruled out the hypothesis ‘quantum theory’ and are now dealing with the hypothesis space of theories that share some parts with quantum theory.
T in this case is not atomic; it is itself a conjunction of a lot of statements. So I agree that I theory known to be inaccurate in some cases can be useful, in that it may contain some true components as well as some untrue ones. But this is rather different than how we treated it when we thought it could be true in its own right.
In general, I agree that there are certain ideas in science that aren’t propositions in Bayesian sense, and that treating them as if they were is a serious mistake. I don’t think that this means that there’s something wrong with the probability probability calculus, however.
But, again, we don’t know that. QM could be right.
I don’t see how these statements can be consistent.
...if relativity and QM contradict, and QM turns out to be right, I’d expect us to reject relativity. Do you agree?