If a species can deal with detrimental mutations for several generations, then that simply means that the species has more time to weed out those really bad mutations, making the “one mutation, one death” equation inadequate to describe the die off rate based purely on the mutation rate. Yes, new mutations pop up all the time, but unless those mutations directly add on to the detrimental effects of previous mutations, the species still will survive another generation.
To add on to my other argument that we “know too little” to make hard mathamatical calculations on how big a functional genome can be, we also shouldn’t work under the assumption that mutation rates are static. Wikipedia’s “Mutation rate” article states the rate varies from species to species, and there is even some disagreement as to what the human rate is. There is NO REASON why a species can’t evolve redudent, error correction copy mechanisms so the mutation rate is right at the sweetspot, providing variation but not so much as to cause extinction.
AGAIN, I still advocate that the original point Eliezer made can’t be proven untill we know exactly how many mutations are detrimental. As a neutral mutation simply doesn’t count, no matter how many generations you look forward, and benificial mutations can counter detrimental ones.
If a species can deal with detrimental mutations for several generations, then that simply means that the species has more time to weed out those really bad mutations, making the “one mutation, one death” equation inadequate to describe the die off rate based purely on the mutation rate. Yes, new mutations pop up all the time, but unless those mutations directly add on to the detrimental effects of previous mutations, the species still will survive another generation.
To add on to my other argument that we “know too little” to make hard mathamatical calculations on how big a functional genome can be, we also shouldn’t work under the assumption that mutation rates are static. Wikipedia’s “Mutation rate” article states the rate varies from species to species, and there is even some disagreement as to what the human rate is. There is NO REASON why a species can’t evolve redudent, error correction copy mechanisms so the mutation rate is right at the sweetspot, providing variation but not so much as to cause extinction.
AGAIN, I still advocate that the original point Eliezer made can’t be proven untill we know exactly how many mutations are detrimental. As a neutral mutation simply doesn’t count, no matter how many generations you look forward, and benificial mutations can counter detrimental ones.