Eliezer, I just noticed that you’ve updated the main post again. The paper by Worden that you link to makes the mistake of assuming no crossing or even chromosomal assortment, as you can see from the following quotes. It’s not surprising that sex doesn’t help under those assumptions.
(being quote)
Next consider what happens to one of the haploid genotypes j in one generation. Through random mating, it gets paired with another haploid genotype k, with probability q; then the pair have a probability of surviving sigmajk.
…
(b) Crossing: Similarly, in a realistic model of crossing, we can show that it always decreases the diploid genotype information Jµ. This is not quite the same as proving that crossing always decreases Iµ, but is a powerful plausibility argument that it does so. In that case, crossing will not violate the limit.
(end quote)
As for not observing species gaining thousands of bits per generation, that might be due to the rarity of beneficial mutations. A dog not apparently having greater morphological or biochemical complexity than a dinosaur can also be explained in many other ways.
If you have the time, I think it would be useful to make another post on this topic, since most people who read the original article will probably not see the detailed discussions in the comments or even notice the Addendum. You really should cite MacKay. His paper does provide a theoretical explanation for what happens in the simulations, if you look at the equations and how they are derived.
Eliezer, I just noticed that you’ve updated the main post again. The paper by Worden that you link to makes the mistake of assuming no crossing or even chromosomal assortment, as you can see from the following quotes. It’s not surprising that sex doesn’t help under those assumptions.
(being quote)
Next consider what happens to one of the haploid genotypes j in one generation. Through random mating, it gets paired with another haploid genotype k, with probability q; then the pair have a probability of surviving sigmajk.
…
(b) Crossing: Similarly, in a realistic model of crossing, we can show that it always decreases the diploid genotype information Jµ. This is not quite the same as proving that crossing always decreases Iµ, but is a powerful plausibility argument that it does so. In that case, crossing will not violate the limit.
(end quote)
As for not observing species gaining thousands of bits per generation, that might be due to the rarity of beneficial mutations. A dog not apparently having greater morphological or biochemical complexity than a dinosaur can also be explained in many other ways.
If you have the time, I think it would be useful to make another post on this topic, since most people who read the original article will probably not see the detailed discussions in the comments or even notice the Addendum. You really should cite MacKay. His paper does provide a theoretical explanation for what happens in the simulations, if you look at the equations and how they are derived.